DOI QR코드

DOI QR Code

Dynamic analysis of quadrilateral concrete foundation integrated with NFRP layers based on numerical method

  • Mahjoobi, Mahdi (Department of Civil Engineering, Khomein Branch, Islamic Azad University) ;
  • Bidgoli, Mahmood Rabani (Department of Civil Engineering, Khomein Branch, Islamic Azad University) ;
  • Mazaheri, Hamid (Department of Civil Engineering, Khomein Branch, Islamic Azad University)
  • 투고 : 2021.03.29
  • 심사 : 2021.10.10
  • 발행 : 2021.11.25

초록

Mathematical modelling of quadrilateral concrete foundation is a novel topic in the literature. In this paper, dynamic response of quadrilateral concrete foundation resting on soil medium subjected to blast load is presented for the first time. The concrete foundation is covered by nano-fiber reinforced polymer (NFRP) layers at the top and bottom surfaces for improving the stiffness. The NFRP are containing carbon nano-fibers (CNF) and its equivalent material characteristics are calculated by Mori-Tanaka model incorporating the agglomeration effects. On the basis of Sinusoidal shear deformation theory (SSDT) and Hamilton's principle, the motion final equations are obtained assuming structural damping utilizing Kelvin-Voigt model. The dynamic deflection of the quadrilateral concrete foundation is discussed based on transformed weighing (TW) coefficients-differential quadrature method (DQM) in conjunction with Newmark method. The influences of different parameters of soil foundation, blast load, volume fraction and agglomeration of CNFs, structural damping, NFRP layer, geometrical parameters and side angles of the quadrilateral concrete foundation are shown on the dynamic displacement. The results are compared with other published works in the literature for presenting the accuracy of the applied model and method. The outcomes show that the dynamic defection will be reduced with enhancing the CNFs volume fraction. In addition, with with increasing the side angle of quadrilateral plate, the dynamic deflection is increased.

키워드

참고문헌

  1. Alhassan, M.A., Al Rousan, R.Z., Hejazi, M.A. and Amaireh, L.K. (2021), "Approximate analysis of quadrilateral slabs having various cases of boundary conditions and aspect ratios", Adv. Struct. Eng., 24, 1782-1797. https://doi.org/10.1177/1369433220982099.
  2. Alengaram, U.J., Mohottige, N.H.W., Wu, C., Jumaat, M.Z. and Wang, Z. (2016), "Response of oil palm shell concrete slabs subjected to quasi-static and blast loads, Constr. Build. Mater., 116, 391-402. https://doi.org/10.1016/j.conbuildmat.2016.04.103.
  3. Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.
  4. Colombo, M., Martinelli, P., Arano, A., O verli, J.A., Hendriks, M.A.N., Kanstad, T. and Di Prisco, M. (2021), "Experimental investigation on the structural response of RC slabs subjected to combined fire and blast", Structures, 31, 1017-1030. https://doi.org/10.1016/j.istruc.2021.02.029.
  5. Duc, N.D., Seung-Eock, K., Cong, P.H., Anh, N.T. and Khoa, N.D. (2017), "Dynamic response and vibration of composite double curved shallow shells with negative Poisson's ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads", Int. J. Mech. Sci., 133, 504-512. https://doi.org/10.1016/j.ijmecsci.2017.09.009.
  6. Ghani Razaghpour, A., Tolba, A. and Contestabile, E. (2007), "Blast loading response of reinforced concrete panels reinforced with externally bonded GFRP laminates", Soil Dyn. Earthq. Eng., 38(5-6), 535-546. https://doi.org/10.1016/j.compositesb.2006.06.016.
  7. Guo, H., Cao, S., Yang, T. and Chen, Y. (2018), "Geometrically nonlinear analysis of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method", Compos. Part B Eng., 154, 216-224. https://doi.org/10.1016/j.compositesb.2018.08.018.
  8. Gudzulic, V., Dang, T.S. and Meschke, G. (2019), "Computational modeling of fiber flow during casting of fresh concrete", Comput. Mech., 63(6), 1111-1129. https://doi.org/10.1007/s00466-018-1639-9.
  9. Guo, X., Liu, Y. and Wang, G. (2021), "Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization", Adv. Nano. Res., 11(2), 203-218. http://doi.org/10.12989/anr.2021.11.2.203.
  10. Han, Z., Pan, E.and Zhang, Z. (2020), "Dynamic response of an embedded flexible foundation of general shape in a transversely isotropic and multilayered half-space", Soil Dyn. Earthq. Eng., 139, 106354. https://doi.org/10.1016/j.soildyn.2020.106354.
  11. Hajmohammad, M.H., Nouri, A.H., Zarei, M.Sh. and Kolahchi, R. (2018), "A new numerical approach and visco-Sinusoidal shear deformation theory for blast analysis of auxetic honeycomb quadrilateral plates integrated by multiphase nanocomposite facesheets in hygrothermal environment", Eng. Comput., 35, 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
  12. Hajmohammad, M.H., Zarei, M.Sh., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally gradedcarbon nanotubes reinforced laminated quadrilateral plates/ actuator based on sinusoidal-visco piezoelasticity theories", J. Sandw. Struct. Mat., In press, https://doi.org/10.1177/1099636217720373.
  13. Huynh, H.D., Natarajan, S., Nguyen-Xuan, H. and Zhuang, X. (2020), "Polytopal composite finite elements for modeling concrete fracture based on nonlocal damage models", Computat. Mech., 66(6), 1257-1274. https://doi.org/10.1007/s00466-020-01898-y.
  14. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2018), "Optimization of dynamic buckling for sandwich nanocomposite quadrilateral plates with sensor and actuator layer based on sinusoidal visco-piezoelasticity theories using Grey Wolf algorithm". J. Sandw. Struct. Mat., In press, https://doi.org/10.1177/1099636217731071.
  15. Kolahchi, R., Zarei, M.S., Hajmohammad, M. H. and Nouri, A. (2017), "Wave propagation of embedded viscoelastic FG-CNTreinforced sandwich quadrilateral plates integrated with sensor and actuator based on Sinusoidal shear deformation theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  16. Lee, M.G., An, J.H., Bae, S.G., Oh, H.S., Choi, J., Yun, D.Y., Hong, T., Lee, D.E. and Park, H.S. (2020), "Multi-objective sustainable design model for integrating CO2 emissions and costs for slabs in office buildings", Struct. Infrastruct. Eng., 16(8), 1096-1105. https://doi.org/10.1080/15732479.2019.1683590.
  17. Lee, M. and Kwak, H.G. (2021), "Numerical simulations of blast responses for SFRC slabs using an orthotropic model", Eng. Struct., 238, 112150. https://doi.org/10.1016/j.engstruct.2021.112150.
  18. Loor, A.S., Rabani Bidgoli, M. and Mazaheri, H. (2021), "Optimization and buckling of rupture building beams reinforced by steel fibers on the basis of adaptive improved harmony search-harmonic differential quadrature methods", Case Stud. Constr. Mater., 15, e00647. https://doi.org/10.1016/j.cscm.2021.e00647.
  19. Malveiro, J., Sousa, C., Ribeiro, D. And Calcada, R. (2018), "Impact of track irregularities and damping on the fatigue damage of a railway bridge deck slab", Struct. Infrastruct. Eng., 14(9), 1257-1268. https://doi.org/10.1080/15732479.2017.1418010.
  20. Maalla, A. and Song, J. (2021), "Computational modeling for nonlinear magneto-electro-elastic responses of smart multiphase symmetric system", Adv. Nano. Res., 11(3), 327-337. http://doi.org/10.12989/anr.2021.11.3.327.
  21. Maheshwari, P. and Naramsetti, B.S. (2019), "Closed form solutions for response of machine foundations under accidental blast loads", Soil Dyn. Earthq. Eng., 116, 386-396. https://doi.org/10.1016/j.soildyn.2018.10.016.
  22. Ragb, O., Matbuly, M.S. and Civalek, O. (2021), "Free vibration of irregular plates via indirect differential quadrature and singular convolution techniques", Eng. Anal. Bound. Elem., 128, 66-79. https://doi.org/10.1016/j.enganabound.2021.03.023.
  23. Reifarth, C., Castedo, R., Santos, A.P., Chiquito, M., Lopez, L.M., Perez-Caldentey, A., Martinez-Almajano, S. and Alanon, A. (2021), "Numerical and experimental study of externally reinforced RC slabs using FRPs subjected to close-in blast loads", Int. J. Impact Eng., 156, 103939. https://doi.org/10.1016/j.ijimpeng.2021.103939.
  24. Saheed, S., Arman, Y.H.M., El-Zeadani, M., Aziz, F.N.A., Fediuk, R., Alyousef, R. and Alabduljabbar, H. (2021), "Structural behavior of out-of-plane loaded precast lightweight EPS-foam concrete C-shaped slabs", J. Build. Eng., 33, 101597. https://doi.org/10.1016/j.jobe.2020.101597.
  25. Shao, W. and Wu, X. (2011), "Fourier differential quadrature method for irregular thin plate bending problems on Winkler foundation", Eng. Anal. Bound. Eleme., 35(3), 389-394. https://doi.org/10.1155/2018/7476954.
  26. Wu, J. and Chew, S.H. (2014), "Field performance and numerical modeling of multi-layer pavement system subject to blast load", Constr. Build. Mater., 52, 177-188. https://doi.org/10.1016/j.conbuildmat.2013.11.035.
  27. Yang, J., Zhu, S. and Zhai, W. (2020), "A novel dynamics model for railway ballastless track with medium-thick slabs", Appl. Math. Model., 78, 907-931. https://doi.org/10.1016/j.apm.2019.09.051.
  28. Zhang, Y.X., Bradford, M.A. and Gilbert, R.I. (2007), "A layered cylindrical quadrilateral shell element for nonlinear analysis of RC plate structures", Adv. Eng. Softw., 38(7), 488-500. https://doi.org/10.1016/j.advengsoft.2006.09.017.
  29. Zhang, L.W. (2017), "The IMLS-Ritz analysis of laminated CNT-reinforced composite quadrilateral plates subjected to a sudden transverse dynamic load", Compos. Struct., 180, 638-646. https://doi.org/10.1016/j.compstruct.2017.07.046.
  30. Zhao, C., Ye, X., He, K. and Gautam, A. (2020), "Numerical study and theoretical analysis on blast resistance of fabricated concrete slab", J. Build. Eng., 32, 101760. https://doi.org/10.1016/j.jobe.2020.101760.