DOI QR코드

DOI QR Code

Direct evaluation of the local stability of structures using nonlinear FE solutions

  • Oh, Min-Han (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Hyo-Jin (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Yoon, Kyungho (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Phill-Seung (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2021.09.08
  • Accepted : 2021.11.01
  • Published : 2021.11.25

Abstract

In this paper, we propose three practical methods for directly evaluating stability in a local structural part of a large structure (local structure). The local stability is assessed by investigating global external load, local internal force, local strain energy, and local displacement, all calculated through nonlinear finite element (FE) analysis. A great advantage of the proposed methods is that they do not require local finite element analysis of the target local part and are applicable to arbitrarily-shaped local parts of a global structure. In addition, unlike previously developed methods, the proposed methods fully consider complicated interactions between local and global structures. The three evaluation methodologies are presented, and their practical effectiveness is demonstrated through several numerical examples.

Keywords

Acknowledgement

This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF2018R1A2B3005328). This study was prepared based on the research results of Oh (2020)'s doctoral dissertation at Korea Advanced Institute of Science and Technology.

References

  1. ABS (2018), Guide for Buckling and Ultimate Strength Assessment for Offshore Structures, American Bureau of Shipping, New York, U.S.A.
  2. AISC (2016), ANSI/AISC 360-16, An American National Standard: Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, U.S.A.
  3. API (2014), RP 2A-WSD, Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms- Working Stress Design, American Petroleum Institute, Washington, U.S.A.
  4. Bazant, Z.P. and Cedolin, L. (1991), Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories, Oxford University Press, New York, U.S.A.
  5. Bisagni, C. and Vescovini, R. (2009), "Analytical formulation for local buckling and post-buckling analysis of stiffened laminated panels", Thin Wall. Struct., 47(3), 318-334. https://doi.org/10.1016/j.tws.2008.07.006.
  6. Blarez, E. (2018), "Moho Nord, a complex integrated project", Offshore Technol. Conf. Asia, Kuala Lumpur, Malaysia, March. https://doi.org/10.4043/28406-ms.
  7. Brubak, L. and Hellesland, J. (2007), "Approximate buckling strength analysis of arbitrarily stiffened, stepped plates", Eng. Struct., 29(9), 2321-2333. https://doi.org/10.1016/j.engstruct.2006.12.002.
  8. Brubak, L., Hellesland, J. and Steen, E. (2007), "Semi-analytical buckling strength analysis of plates with arbitrary stiffener arrangements", J. Constr. Steel Res., 63(4), 532-543. https://doi.org/10.1016/j.jcsr.2006.06.002.
  9. BV (2018), Rule Note NI 615 DT R02 E, Buckling Assessment of Plated Structures, Bureau Veritas, Paris, France.
  10. DNV (2010), DNV-RP-C201, Recommended Practice: Buckling Strength of Plated Structures, Det Norske Veritas, Oslo, Norway.
  11. DNVGL (2015), DNVGL-CG-0128, Class Guideline: Buckling, DNVGL, Oslo, Norway.
  12. DNVGL (2017), DNVGL-RP-C202, Recommended Practice: Buckling Strength of Shells, DNVGL, Oslo, Norway.
  13. DNVGL (2018), DNVGL-RU-SHIP Pt.3 Ch.8, Rules for Classification: Buckling, DNVGL, Oslo, Norway.
  14. Jamshidi, S. and Fallah, N. (2019), "Buckling analysis of arbitrary point-supported plates using new hp-cloud shape functions", Struct. Eng. Mech., 70(6), 711-722. https://doi.org/10.12989/sem.2019.70.6.711.
  15. Jaunky, N., Knight, N.F. and Ambur, D.R. (1995a), "Buckling analysis of general triangular anisotropic plates using polynomials", AIAA J., 33(12), 9387-2654. https://doi.org/10.2514/3.13000.
  16. Jaunky, N., Knight, N.F. and Ambur, D.R. (1995b), "Buckling of arbitrary quadrilateral anisotropic plates", AIAA J., 33(5), 938-944. https://doi.org/10.2514/3.12512.
  17. Jeon, H.M., Lee, P.S. and Bathe, K.J. (2014), "The MITC3 shell finite element enriched by interpolation covers", Comput. Struct., 134, 128-142. https://doi.org/10.1016/j.compstruc.2013.12.003.
  18. Jeon, H.M., Lee, Y., Lee, P.S. and Bathe, K.J. (2015), "The MITC3+ shell element in geometric nonlinear analysis", Comput. Struct., 146, 91-104. https://doi.org/10.1016/j.compstruc.2014.09.004.
  19. Kim, B.J., Park, Y.M., Kim, K. and Choi, B.H. (2019), "Web bend-buckling strength of plate girders with two longitudinal web stiffeners", Struct. Eng. Mech., 69(4), 383-397. https://doi.org/10.12989/sem.2019.69.4.383.
  20. Kim, D.K., Poh, B.Y., Lee, J.R. and Paik, J.K. (2018a), "Ultimate strength of initially deflected plate under longitudinal compression: Part I=An advanced empirical formulation", Struct. Eng. Mech., 68(2), 247-259. https://doi.org/10.12989/sem.2018.68.2.247.
  21. Kim, H.S., Park, Y.M., Kim, B.J. and Kim, K. (2018b), "Numerical investigation of buckling strength of longitudinally stiffened web of plate girders subjected to bending", Struct. Eng. Mech., 65(2), 141-154. https://doi.org/10.12989/sem.2018.65.2.141.
  22. Kim, J.H., Jeon, J.H., Park, J.S., Seo, H.D., Ahn, H.J. and Lee, J.M. (2015), "Effect of reinforcement on buckling and ultimate strength of perforated plates", Int. J. Mech. Sci., 92, 194-205. https://doi.org/10.1016/j.ijmecsci.2014.12.016.
  23. Kim, U.N., Choe, I.H. and Paik, J.K. (2009), "Buckling and ultimate strength of perforated plate panels subject to axial compression: experimental and numerical investigations with design formulations", Ship. Offshore Struct., 4(4), 337-361. https://doi.org/10.1080/17445300902990606.
  24. Ko, Y., Lee, P.S. and Bathe, K.J. (2016), "The MITC4+ shell element and its performance", Comput. Struct., 169, 57-68. https://doi.org/10.1016/j.compstruc.2016.03.002.
  25. Ko, Y., Lee, P.S. and Bathe, K.J. (2017), "A new MITC4+ shell element", Comput. Struct., 182, 404-418. https://doi.org/10.1016/j.compstruc.2016.11.004.
  26. Komur, M.A. and Sonmez, M. (2008), "Elastic buckling of perforated plates subjected to linearly varying in-plane loading", Struct. Eng. Mech., 28(3), 353-356. https://doi.org/10.12989/sem.2008.28.3.353.
  27. Lee, P.S. and Bathe, K.J. (2005), "Insight into finite element shell discretizations by use of the "basic shell mathematical model"", Comput. Struct., 83, 69-90. https://doi.org/10.1016/j.compstruc.2004.07.005.
  28. Lee, P.S. and Bathe, K.J. (2010), "The quadratic MITC plate and MITC shell elements in plate bending", Adv. Eng. Softw., 41(5), 712-728. https://doi.org/10.1016/j.advengsoft.2009.12.011.
  29. Lee, P.S., Noh, H.C. and Bathe, K.J. (2007), "Insight into 3-node triangular shell finite elements: the effects of element isotropy and mesh patterns", Comput. Struct., 85, 404-418. https://doi.org/10.1016/j.compstruc.2006.10.006.
  30. Lee, S.E., Thayamballi, A.K. and Paik, J.K. (2015), "Ultimate strength of steel brackets in ship structures", Ocean Eng., 101, 182-200. https://doi.org/10.1016/j.oceaneng.2015.04.030.
  31. Lee, Y., Lee, P.S. and Bathe, K.J. (2014), "The MITC3+ shell element and its performance", Comput. Struct., 138, 12-23. https://doi.org/10.1016/j.compstruc.2014.02.005.
  32. Lei, Y., Chen, S., Wang, L. and Xu, H. (2018), "Global strength analysis of a monocolumn FPSO", Proc. Int. Offshore Polar Eng. Conf., Sapporo, Japan, June.
  33. Mohammadzadeh, B., Choi, E. and Kim, W.J. (2018), "Comprehensive investigation of buckling behavior of plates considering effects of holes", Struct. Eng. Mech., 68(2), 261-275. https://doi.org/10.12989/sem.2018.68.2.261.
  34. MSC Software (2018), MSC Nastran 2018 Quick Reference Guide, MSC Software, Newport Beach, U.S.A.
  35. Muhammad, T. and Singh, A.V. (2005), "The buckling of rectangular plates with opening using a polynomial method", Struct. Eng. Mech., 21(2), 151-168. https://doi.org/10.12989/sem.2005.21.2.151.
  36. Oh, M.H. (2020), "A practical method for evaluating stability of local structures using strain energy variation", Ph.D. Dissertation, Korea Advanced Institute of Science and Technology, Daejeon.
  37. Pei, Z., Iijima, K., Fujikubo, M., Tanaka, S., Okazawa, S. and Yao, T. (2015), "Simulation on progressive collapse behaviour of whole ship model under extreme waves using idealized structural unit method", Marine Struct., 40, 104-133. https://doi.org/10.1016/j.marstruc.2014.11.002.
  38. Saad-Eldeen, S., Garbatov, Y.C. and Soares, G. (2016), "Experimental strength assessment of thin steel plates with a central elongated circular opening", J. Constr. Steel Res., 118, 135-144. https://doi.org/10.1016/j.jcsr.2015.11.005.
  39. Saadatpour, M.M., Azhari, M. and Bradford, M.A. (1998), "Buckling of arbitrary quadrilateral plates with intermediate supports using the Galerkin method", Comput. Meth. Appl. Mech. Eng., 164(3-4), 297-306. https://doi.org/10.1016/S0045-7825(98)00030-9.
  40. Tham, L.G. and Szeto, H.Y. (1990), "Buckling analysis of arbitrarily shaped plates by spline finite strip method", Comput. Struct., 36(4), 729-735. https://doi.org/10.1016/0045-7949(90)90087-I.
  41. Wang, C.M. and Liew, K.M. (1994), "Buckling of triangular plates under uniform compression", Eng. Struct., 16(1), 43-50. https://doi.org/10.1016/0141-0296(94)90103-1.
  42. Wang, D. and Abdalla, M.M. (2015), "Global and local buckling analysis of grid-stiffened composite panels", Compos. Struct., 119, 767-776. https://doi.org/10.1016/j.compstruct.2014.09.050.
  43. Wu, L. and Feng, W. (2003), "Differential cubature method for buckling analysis of arbitrary quadrilateral thick plates", Struct. Eng. Mech., 16(3), 259-274. https://doi.org/10.12989/sem.2003.16.3.259.
  44. Xiang, Y. (2002), "Buckling of triangular plates with elastic edge constraints", Acta Mech., 156(1-2), 63-77. https://doi.org/10.1007/BF01188742.
  45. Xiang, Y., Wang, C.M., Kitipornchai, S. and Liew, K.M. (1994), "Buckling of triangular Mindlin plates under isotropic in-plane compression", Acta Mech., 102(1-4), 123-135. https://doi.org/10.1007/BF01178522.
  46. Zi, G., Kim, H.H., Ahn, J.Y. and Oh, M.H. (2017), "Evaluation of buckling strength of non-structured plates by using the deformation energy", J. Korea Inst. Struct. Mainten. Inspect., 21(3), 102-113. https://doi.org/10.11112/jksmi.2017.21.3.102.