과제정보
This work is supported by a Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 21SCIP-C151438-03).
참고문헌
- Abbasi, N. and Mahdieh, M. (2018), "Improvement of geotechnical properties of silty sand soils using natural pozzolan and lime", Int. J. Geo-Eng., 9(1), 1-12. https://doi.org/10.1186/s40703-018-0072-4.
- Archie, G.E. (1942), "The electrical resistivity log as an aid in determining some reservoir characteristics", Transactions American Institute Mining Metallurgical Engineers, 146, 54-61. https://doi.org/10.2118/942054-G.
- Avci, E. and Mollamahmutoglu, M. (2016), "UCS roperties of superfine cement-grouted sand", J. Mater. Civil Eng., 28(12), 06016015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001659.
- Berodier, E. and Scrivener, K. (2015), "Evolution of pore structure in blended systems", Cement Concrete Res., 73, 25-35. https://doi.org/10.1016/j.cemconres.2015.02.025.
- Bishnoi, S. and Scrivener, K.L. (2009), "Studying nucleation and growth kinetics of alite hydration using µic", Cement Concrete Res., 39(10), 849-860. https://doi.org/10.1016/j.cemconres.2009.07.004.
- Cardoso, R. and Dias, A.S. (2017), "Study of the electrical resistivity of compacted kaolin based on water potential", Eng. Geology, 226, 1-11. https://doi.org/10.1016/j.enggeo.2017.04.007.
- Cardoso, R., Ribeiro, D. and Neri, R. (2017), "Bonding effect on the evolution with curing time of compressive and tensile strength of sand-cement mixtures", Soils Foundations, 57(4), 655-668. https://doi.org/10.1016/j.sandf.2017.04.006.
- Carino, N.J. (1984), "The maturity method: Theory and application", Cement Concrete Aggregates, 6(2), 61-73. https://doi.org/10.1520/CCA10358J.
- Choo, H. and Burns, S.E. (2014), "Review of Archie's equation through theoretical derivation and experimental study on uncoated and hematite coated soils", J. Appl. Geophys., 105, 225-234. https://doi.org/10.1016/j.jappgeo.2014.03.024.
- Choo, H., Lee, W. and Lee, C. (2018), "Overconsolidation and cementation in sands: Impacts on geotechnical properties and evaluation using dilatometer tests", Geotech. Testing J., 41(5), 915-929. https://doi.org/10.1520/GTJ20170368.
- Choo, H., Nam, H. and Lee, W. (2017), "A practical method for estimating maximum shear modulus of cemented sands using unconfined compressive strength", J. Appl. Geophys., 147, 102-108. https://doi.org/10.1016/j.jappgeo.2017.10.012.
- Choo, H., Nam, H., Lee, C., Lee, W. and Burns, S. (2019), "Monitoring hydration process and quality of sand grouted with microfine-cement using shear wave velocity and electrical conductivity measurements", Proceedings of E3S Web of Conferences, EDP Sciences, 11012. https://doi.org/10.1051/e3sconf/20199211012.
- Consoli, N.C., Cruz, R.C. and Floss, M.F. (2011), "Variables controlling strength of artificially cemented sand: influence of curing time", J. Mater. Civil Eng., 23(5), 692-696. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000205.
- Consoli, N.C., Winter, D., Rilho, A.S., Festugato, L. and Teixeira, B.D. (2015), "A testing procedure for predicting strength in artificially cemented soft soils", Eng. Geology, 195, 327-334. https://doi.org/10.1016/j.enggeo.2015.06.005.
- Dano, C., Hicher, P.-Y. and Tailliez, S. (2004), "Engineering properties of grouted sands", J. Geotech. Geoenviron. Eng., 130(3), 328-338. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:3(328),
- Ferreira, R. M. and Jalali, S. (2010), "NDT measurements for the prediction of 28-day compressive strength", NDT E Int., 43(2), 55-61. https://doi.org/10.1016/j.ndteint.2009.09.003.
- Han, J. (2015), Principles and Practice of Ground Improvement, John Wiley and Sons, NJ, USA.
- Komine, H. (1997), "Evaluation of chemical grouted soil by electrical resistivity", Proceedings of the Institution of Civil Engineers-Ground Improvement, 1(2), 101-113. https://doi.org/10.1680/gi.1997.010203.
- Lee, C., Nam, H., Lee, W., Choo, H. and Ku, T. (2019), "Estimating UCS of cement-grouted sand using characteristics of sand and UCS of pure grout", Geomech Eng, 19(4), 343-352. https://doi.org/10.12989/gae.2019.19.4.343.
- Li, Z.J., Xiao, L.Z. and Wei, X.S. (2007), "Determination of concrete setting time using electrical resistivity measurement", J. Mater. Civil Eng., 19(5), 423-427. https://doi.org/10.1061/(Asce)0899-1561(2007)19:5(423),
- Lim, S., Lee, W., Choo, H. and Lee, C. (2017), "Utilization of high carbon fly ash and copper slag in electrically conductive controlled low strength material", Construct. Build. Mater., 157, 42-50. https://doi.org/10.1016/j.conbuildmat.2017.09.071.
- Liu, S.Y., Du, Y.J., Han, L.H. and Gu, M.F. (2008), "Experimental study on the electrical resistivity of soil-cement admixtures", Environ Geol, 54(6), 1227-1233. https://doi.org/10.1007/s00254-007-0905-5.
- Markou, I. and Droudakis, A. (2013), "Factors affecting engineering properties of microfine cement grouted sands", Geotech. Geologic. Eng., 31(4), 1041-1058. https://doi.org/10.1007/s10706-013-9631-9.
- Mindess, S., Young, F. and Darwin, D. (2003), Concrete 2nd Edition, Prentice Hall, NJ, USA.
- Mollamahmutoglu, M. and Yilmaz, Y. (2011), "Engineering properties of medium-to-fine sands injected with microfine cement grout", Marine Georesourc. Geotechnol., 29(2), 95-109. https://doi.org/10.1080/1064119X.2010.517715.
- Nonveiller, E. (2013), Grouting Theory and Practice, Elsevier, Amsterdam, Netherlands.
- Pantazopoulos, I., Markou, I., Christodoulou, D., Droudakis, A., Atmatzidis, D., Antiohos, S. and Chaniotakis, E. (2012), "Development of microfine cement grouts by pulverizing ordinary cements", Cement Concrete Compos., 34(5), 593-603. https://doi.org/10.1080/1064119X.2010.517715.
- Park, D. and Oh, J. (2018), "Permeation grouting for remediation of dam cores", Eng. Geology, 233, 63-75. https://doi.org/10.1016/j.enggeo.2017.12.011.
- Santarato, G., Ranieri, G., Occhi, M., Morelli, G., Fischanger, F. and Gualerzi, D. (2011), "Three-dimensional Electrical Resistivity Tomography to control the injection of expanding resins for the treatment and stabilization of foundation soils", Eng. Geology, 119(1-2), 18-30. https://doi.org/10.1016/j.enggeo.2011.01.009.
- Sariosseiri, F. and Muhunthan, B. (2009), "Effect of cement treatment on geotechnical properties of some Washington State soils", Eng. Geology, 104(1-2), 119-125. https://doi.org/10.1016/j.enggeo.2008.09.003.
- Scrivener, K. L., Juilland, P. and Monteiro, P. J. (2015), "Advances in understanding hydration of Portland cement", Cement Concrete Res., 78, 38-56. https://doi.org/10.1016/j.cemconres.2015.05.025.
- Sun, Z., Ye, G. and Shah, S. P. (2005), "Microstructure and earlyage properties of Portland cement paste-effects of connectivity of solid phases", ACI Mater. J., 102(2), 122-129.
- Sunitsakul, J., Sawatparnich, A. and Sawangsuriya, A. (2012), "Prediction of unconfined compressive strength of soil-cement at 7 days", Geotech. Geologic. Eng., 30(1), 263-268. https://doi.org/10.1007/s10706-011-9460-7.
- Taylor, M. A. and Arulanandan, K. (1974), "Relationships between electrical and physical properties of cement pastes", Cement Concrete Res., 4(6), 881-897. https://doi.org/10.1016/0008-8846(74)90023-4.
- Van Breugel, K. (1993), "Simulation of hydration and formation of structure in hardening cement-based materials", Ph.D. Dissertation, Delft University of Technnology, Netherlands.
- Vincent, N. A., Shivashankar, R., Lokesh, K. and Jacob, J. M. (2017), "Laboratory electrical resistivity studies on cement stabilized soil", Int. Scholarly Res. Notices, 2017. https://doi.org/10.1155/2017/8970153.
- Voigt, T., Ye, G., Sun, Z. H., Shah, S. P. and van Breugel, K. (2005), "Early age microstructure of Portland cement mortar investigated by ultrasonic shear waves and numerical simulation", Cement Concrete Res., 35(5), 858-866. https://doi.org/10.1016/j.cemconres.2004.09.004.
- Wei, X. and Li, Z. (2005), "Study on hydration of Portland cement with fly ash using electrical measurement", Mater Struct, 38(277), 411-417. https://doi.org/10.1617/14108.
- Wei, X.S., Xiao, L.Z. and Li, Z.J. (2012), "Prediction of standard compressive strength of cement by the electrical resistivity measurement", Construct. Build. Mater., 31, 341-346. https://doi.org/10.1016/j.conbuildmat.2011.12.111.
- Won, J., Park, J., Choo, H. and Burns, S. (2019), "Estimation of saturated hydraulic conductivity of coarse-grained soils using particle shape and electrical resistivity", J. Appl. Geophys., 167, 19-25. https://doi.org/10.1016/j.jappgeo.2019.05.013.
- Xiao, L. Z. and Li, Z. J. (2009), "New Understanding of Cement Hydration Mechanism through Electrical Resistivity Measurement and Microstructure Investigations", J. Mater. Civil Eng., 21(8), 368-373. https://doi.org/10.1061/(Asce)0899-1561(2009)21:8(368),
- Xu, W., Tian, X. and Cao, P. (2018), "Assessment of hydration process and mechanical properties of cemented paste backfill by electrical resistivity measurement", Nondestructive Testing Evaluation, 33(2), 198-212. https://doi.org/10.1080/10589759.2017.1353983.
- Ye, G., Van Breugel, K. and Fraaij, A. (2003), "Three-dimensional microstructure analysis of numerically simulated cementitious materials", Cement Concrete Res., 33(2), 215-222. https://doi.org/10.1016/S0008-8846(02)00889-X.
- Yoon, B., Lee, W., Lee, C. and Choo, H. (2020), "Time-Dependent Variations of Compressive Strength and Small-Strain Stiffness of Sands Grouted with Microfine Cement", J. Geotech. Geoenviron. Eng., 146(4), 06020001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002207.
- Zhang, D. W., Cao, Z.G., Fan, L.B., Liu, S.Y. and Liu, W.Z. (2014), "Evaluation of the influence of salt concentration on cement stabilized clay by electrical resistivity measurement method", Eng. Geology, 170, 80-88. https://doi.org/10.1016/j.enggeo.2013.12.010.
- Zhang, D.W., Chen, L. and Liu, S.Y. (2012), "Key parameters controlling electrical resistivity and strength of cement treated soils", J Cent South Univ, 19(10), 2991-2998. https://doi.org/10.1007/s11771-012-1368-8.