References
- Agiza, H.N. and Yassen, M.T. (2001), "Synchronization of Rossler and Chen chaotic dynamical systems using active control", 278(4), 191-197. https://doi.org/10.1016/S0375-9601(00)00777-5
- Baghaei, K., Ghaffarzadeh, H., Hadigheh, A. and Dias-da-Costa, D. (2019), "Chattering-free sliding mode control with a fuzzy model for structural applications", Struct. Eng. Mech., Int. J., 69(3), 307-315. http://doi.org/10.12989/sem.2019.69.3.307
- Beltran-Carbajal, F. and Silva-Navarro, G. (2014), "Active vibration control in Duffing mechanical systems using dynamic vibration absorbers", J. Sound Vib., 333, 3019-3030. https://doi.org/10.1016/j.jsv.2014.03.002
- Brennan, M.J., Kovacic, I., Carrella, A. and Waters, T.P. (2008), "On the jump-up and jump-down frequencies of the Duffing oscillator", J. Sound Vib., 318, 1250-1261. https://doi.org/10.1016/j.jsv.2008.04.032
- Chang, R.J. (2017), "Extension of nonlinear stochastic solution to include sinusoidal excitation illustrated by Duffing oscillator", J. Computat. Nonlinear Dyn., 12(5), 051030. https://doi.org/10.1115/1.4037105
- Chen, X. and Liu, C. (2010), "Passive control on a unified chaotic system", Nonlinear Anal.: Real World Applicat., 11, 683-687. https://doi.org/10.1016/j.nonrwa.2009.01.014
- Chen, S. and Lu, J. (2002), "Synchronization of an uncertain chaotic system via adaptive control", Chaos Solit. Fract., 14, 643-647. https://doi.org/10.1016/S0960-0779(02)00006-1
- Contreras-Lopez, J., Ornelas-Tellez, F. and Espinosa-Juarez, E. (2019), "Nonlinear optimal control for reducing vibrations in civil structures using smart devices", Smart Struct. Syst, Int. J., 23(3), 307-318. http://doi.org/10.12989/sss.2019.23.3.307
- Dinca, F. and Teodosiu, C. (1973), "Nonlinear and Random Vibrations", SIAM Review, 17(3), 578. https://doi.org/10.1137/1017063
- Efimov, D. and Perruquetti, W. (2016), "On condition of oscillations and multi-homogeneity", Math. Control Signals Syst., 28(1), 1-37. https://doi.org/10.1007/s00498-015-0157-y
- Elabbasy, E.M., Agiza, H.N. and El-Dessoky, M.M. (2004), "Synchronization of modified Chen system", Int. J. Bifurc. Chaos, 14, 3969-3979. https://doi10.1142/S0218127404011740
- Friswell, M.I. and Penny, J.E.T. (1994), "The accuracy of jump frequencies in series solutions of the response of a Duffing oscillator", J. Sound Vib., 169(2), 261-269. https://doi 10.1006/jsvi.1994.1018
- Ghandchi-Tehrani, M., Wilmshurst, L.I. and Elliott, S.J. (2015), "Bifurcation control of a Duffing oscillator using pole placement", J. Vib. Control, 21(14), 2838-2851. https://doi.org/10.1177/1077546313517586
- Glendinning, P. (1994), Stability, Instability and Chaos: an Introduction to the Theory of Nonlinear Differential Equations, Cambridge University Press, Cambridge, UK.
- Jezequel, L. and Lamarque, C.H. (1991), "Analysis of nonlinear dynamic systems by the normal form theory", J. Sound Vib., 149(3), 429-459. https://doi.org/10.1016/0022-460X(91)90446-Q
- Kovacic, I. and Brennan, M.J. (2011), The Duffing equation: nonlinear oscillators and their behaviour, John Wiley, London, UK.
- Krack, M. and Gross, J. (2019), Harmonic balance for nonlinear vibration problems, Springer International Publishing. https://doi.org/10.1007/978-3-030-14023-6
- Lei, Y., Xu, W., Shen, J. and Fang, T. (2006), "Global synchronization of two parametrically excited Systems using active control", Chaos Solit. Fract., 28, 428-436. https://doi.org/10.1016/j.chaos.2005.05.043
- Loria, A., Panteley, E. and Nijmeijer, H. (1998), "Control of the chaotic Duffing equation with uncertainty in all parameters", IEEE Transact. Circuits Syst. I: Fundamental Theory and Applications, 45(12), 1252-1255. http://doi.org/10.1109/81.736558
- Luo, X.S., Zhang, B. and Qin, Y.H. (2010), "Controlling chaos in space-clamped FitzHugh-Nagumo neuron by adaptive passive method", Nonlinear Anal.: Real World Applicat., 11, 1752-1759. https://doi.org/10.1016/j.nonrwa.2009.03.029
- Mahmoud, G.M., Aly, S.A. and Farghaly, A.A. (2007), "On chaos synchronization of a complex two coupled dynamos system", Chaos Solit. Fract., 33, 178-187. https://doi.org/10.1016/j.chaos.2006.01.036
- Mahmoudi, R., Ghaffarzadeh, H., Ahani, E. and Katebi, J. (2019), "Sliding mode control of linear structures and a Duffing system using active tendons", Proceedings of the Institution of Civil Engineers - Eng. Computat. Mech., 172(3), 106-117. https://doi.org/10.1680/jencm.18.00033
- Murata, A., Kume, Y. and Hashimoto, F. (1987), "Application of catastrophe theory to the forced vibration of a diaphragm air spring", J. Sound Vib., 112(1), 31-44. https://10.1016/S0022-460X(87)80091-3
- Nayfeh, A.H., Mook, D.T. and Holmes, P. (1980), Nonlinear Oscillations, Wiley, New York, USA.
- Newland, D.E. (1993), Introduction to Random Vibrations, Spectral and Wavelet Analysis, New York: Longman.
- Ott, E., Grebogi, C. and Yorke, J.A. (1990), "Controlling chaos", Phys. Rev. Lett., 64(11), 1196-1199. https://doi.org/10.1103/PhysRevLett.64.1196
- Park, J.H. (2005a), "Chaos synchronization of a chaotic system via nonlinear control", Chaos Solit. Fract., 25, 579-584. https://doi.org/10.1016/j.chaos.2004.11.038
- Park, J.H. (2005b), "On synchronization of unified chaotic systems via nonlinear control", Chaos Solit. Fract., 25, 699-704. https://doi.org/10.1016/j.chaos.2004.11.031
- Park, J.H. (2006), "Synchronization of Genesio chaotic system via back-stepping approach", Chaos Solit. Fract., 27, 1369-1375. https://doi.org/10.1016/j.chaos.2005.05.001
- Peleg, K. (1979), "Frequency response of non-linear single degree-of-freedom systems", Int. J. Mech. Sci., 21, 75-84. https://doi.org/10.1016/S0022-460X(85)80150-4
- Seemann, W. and Gausmann, R. (2001), "A note on the strong nonlinear behavior of piezoceramics excited with a weak electric field", SPIE Smart Struct. Mater., 4333, 131-140. https://doi.org/10.1117/12.432749
- Storer, D.M. and Tomlinson, G.R. (1993), "Recent developments in the measurement and interpretation of higherorder transfer functions from nonlinear structures", Mech. Syst. Signal Process., 7(2), 173-189. https://doi.org/10.1006/mssp.1993.1006
- Ucar, A., Lonngren, K.E. and Bai, E.W. (2006), "Synchronization of the unified chaotic systems via active control", Chaos Solit. Fract., 27, 1292-1297. https://doi.org/10.1016/j.chaos.2005.04.104
- Verhulst, F. (1996), Nonlinear Differential Equations and Dynamical Systems, Springer, New York, USA.
- Wagg, D. and Neild, S. (2010), Nonlinear Vibration with Control, Springer, New York, USA.
- Wang, Y., Guan, Z.H. and Wang, H.O. (2003), "Feedback and adaptive control for the synchronization of Chen system via a single variable", Phys. Lett. A, 312, 34-40. https://doi.org/10.1016/S0375-9601(03)00573-5
- Worden, K. (1996), "On jump frequencies in the response of a Duffing oscillator", J. Sound Vib., 198(4), 522-525. https://doi.org/10.1006/jsvi.1996.0586
- Worden, K. and Tomlinson, G.R. (2001), Nonlinearity in Structural Dynamics, Detection, Identification and Modelling, University of Sheffield, UK.
- Wu, J., Chen, W., Yang, F., Li, J. and Zhu, Q. (2015), "Global adaptive neural control for strict-feedback time- delay systems with predefined output accuracy", Inform. Sci., 301, 27-43. https://doi.org/10.1016/j.ins.2014.12.039