DOI QR코드

DOI QR Code

정수슬러지를 재활용한 인공경량골재의 제조 및 비점오염원 여재의 적용

Manufacturing of artificial lightweight aggregate from water treatment sludge and application to Non-point treatment filteration

  • 투고 : 2021.09.29
  • 심사 : 2021.10.20
  • 발행 : 2021.10.31

초록

본 연구는 정수슬러지의 활용을 위하여 경량골재를 제조하고, 그 물성을 확인하기 위하여 경량골재의 특성과 그 활용가능성을 확인하는 것이다. 경량골재 원료로써 특성을 알아보기 위하여 화학조성 및 열적 특성에 대하여 검토하였다. 급속소성법을 이용하여 골재를 소성하고 물성을 측정하였다. 정수슬러지는 높은 강열감량을 가지고 있었으며, 높은 내화도를 가지고 있었다. 정수슬러지를 30wt% 첨가하였을 때 1,150~1,200℃의 온도에서 경량화되는 것을 확인할 수 있었고, 1200℃이상의 온도에서 밀도 0.8이하의 초경량골재도 제조할 수 있었다. 일반골재를 대체하여 콘크리트에 적용 시 28일 강도가 200~600kgf/cm2를 갖는 공시체를 얻을 수 있었으며, 여과재 시험 시 일반모래와 동등 이상의 성능을 나타냈다.

The purpose of this study is to manufacture lightweight aggregates for recycling water treatment sludge, to identify the physical properties of the aggregates, and present a method of utilizing the manufactured lightweight aggregates. The chemical composition and thermal properties were examined via a raw materials analysis. The aggregate examined here was fired by the rapid sintering method and the single-particle density and water absorption rate were measured. Water treatment sludge has high ignition loss and high fire resistance. When 30wt% of purified sludge was added, the single-particle density of the aggregates was in the range of 0.8~1.2g/cm3 at a temperature of 1,150~1,200℃. At temperatures of 1200℃ or higher, ultra-light aggregates having a single-particle density of 0.8 or less could be produced. When applied to concrete by replacing the general aggregate in the concrete, a specimen having strength values of 200 to 450 kgf/cm2 on 28 days was obtained, and when applied as a filter material, the performance was equal to or higher than that of ordinary sand.

키워드

과제정보

본 논문은 2021년도 경기녹색환경지원센터의 연구개발사업에 의하여 지원되었음.

참고문헌

  1. T. Ahmad, K. A. M. Alam, "Sustainable management of water treatment sludge through 3'R' concept" J. Clean. Prod. 124, 1-13, (2016). https://doi.org/10.1016/j.jclepro.2016.02.073
  2. A. O. Babatunde, Y. Q. Zhao, "Constructive approaches toward water treatment works sludge management: an international review of beneficial reuses" Crit. Rev. Environ. Sci. Technol. 37 129-164, (2007). https://doi.org/10.1080/10643380600776239
  3. C.Martinez-Garcia, D.Eliche-Quesada, L.Perez-Villarejo, F.J.Iglesias-Godino, F.A.CorpasIglesias, ""J.Environ.Manage.,95S343-S348.
  4. K.B. Dassanayake, G.Y. Jayasinghe, A. Surapaneni, C. Hetherington, "A review on alum sludge reuse with special reference to agricultural applications and future challenges" Waste Manag., 38, 321-335, (2015). https://doi.org/10.1016/j.wasman.2014.11.025
  5. M.A. Sanchez-Monedero, C. Modini, M.D. Nobili, L. Leita, A. Roig, ""WasteManag.24325-332, (2004).
  6. E. H. Kim, J. K. Cho, S. Yim, "Digested sewage sludge solidification by converter slag for landfill cover" Chemosphere, 59 387-395, (2005). https://doi.org/10.1016/j.chemosphere.2004.10.038
  7. S. D. C. Gomes, J. L. Zhou, W. Li, F. Qu "Recycling of raw water treatment sludge in cementitious composites: effects on heat evolution, compressive strength and microstructure" Resour. Conserv. Recycl. 161 104970, (2020). https://doi.org/10.1016/j.resconrec.2020.104970
  8. L. G. G. Godoy, A. B. Rohden, M. R. Garcez, E. B. Costa, S. D. Dalt, J. J. O. Andrade, "Valorization of water treatment sludge waste by application as supplementary cementitious material" Constr. Build. Mater. 223 939-950, (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.333
  9. Y. Liu, Y. Zhuge, C. W. K. Chow, A. Keegan, D. Li, P. N. Pham, J. Huang, R. Siddique, "Utilization of drinking water treatment sludge in concrete paving blocks: Microstructural analysis, durability and leaching properties" J. Environ. Manage. 262 110352, (2020). https://doi.org/10.1016/j.jenvman.2020.110352
  10. Y. Liu, Y. Zhuge, C. W. K. Chow, A. A. Keegan, D. Li, P. N. Pham, J. Huang, R. Siddique, "Properties and microstructure of concrete blocks incorporating drinking water treatment sludge exposed to early-age carbonation curing" J. Clean. Prod. 261 121257, (2020). https://doi.org/10.1016/j.jclepro.2020.121257
  11. R. H. Geraldo L. F. R. Fernandes, G. Camarini, "Water treatment sludge and rice husk ash to sustainable geopolymer production" J. Clean. Prod. 149 146-155, (2017). https://doi.org/10.1016/j.jclepro.2017.02.076
  12. A. M. Heniegal, M. A. Ramadan, A. Naguib, I. S. Agwa, "Study on properties of clay brick incorporating sludge of water treatment plant and agriculture waste" Case Stud. Constr. Mater. 13 e00397, (2020). https://doi.org/10.1016/j.cscm.2020.e00397
  13. A. Benlalla, M. Elmoussaouiti, M. Dahhou, M. Assafi, "Utilization of water treatment plant sludge in structural ceramics bricks" Appl. Clay Sci. 118 171-177, (2015). https://doi.org/10.1016/j.clay.2015.09.012
  14. J. H. Tay, K. Y. Show, "Reuse of Wastewater Sludge in Manufacturing Non-Conventional Construction Materals - An Innovative Approach to Ultimate Sludge Disposal" Water sci. Technol. 26 1165-1174, (1992). https://doi.org/10.2166/wst.1992.0558
  15. C. H. Huang, S. Y. Wang, "Application of water treatment sludge in the manufacturing of lightweight aggregate" Constr. Build. Mater. 43 174-183, (2013). https://doi.org/10.1016/j.conbuildmat.2013.02.016
  16. C. Huang, J.R. Pan, Y. Liu, "Mixing water treatment residual with excavation waste soil in brick and artificial aggregate making", J. Environ. Eng. 131 272-277, (2005). https://doi.org/10.1061/(ASCE)0733-9372(2005)131:2(272)
  17. K. D. Kim, J. H. Kim, Y. T. Kim, S. G. Kang, K. G. Lee, "Production of Lightweight Aggregates Using Power Plant Reclaimed Ash", J. Kor. Ceram. Soc. 47 583-589, (2010). https://doi.org/10.4191/KCERS.2010.47.6.583
  18. H. S. Kim, S. G. Kang, Y. T. Kim, K. G. Lee, J. H. Kim, "Heavy Metal Leaching Characteristics of Silicate Glass Containing EAF Dust" J. Kor. Ceram. Soc. 43 136-141, (2006). https://doi.org/10.4191/KCERS.2006.43.2.136
  19. C. M. RILEY, "Relation of Chemical Properties to the Bloating of Clays," J. Am. Ceram. Soc., 34, 121-128, (1951). https://doi.org/10.1111/j.1151-2916.1951.tb11619.x
  20. Y. M. Wie, K. G. Lee, K. H. Lee, "Chemical design of lightweight aggregate to prevent adhesion at bloating activation temperature" J. Asian Ceram. Soc. 8 245-254, (2020). https://doi.org/10.1080/21870764.2020.1725259
  21. Y. M. Wie, K. G. Lee, "Composition design of the optimum bloating activation condition for artificial lightweight aggregate using coal ash" J. Kor. Ceram. Soc. 57 220-230, (2020). https://doi.org/10.1007/s43207-020-00025-0
  22. Y. M. Wie, K. G. Lee, K. H. Lee, and, "Optimum conditions for unit processing of artificial lightweight aggregates using the Taguchi method," J. Asian Ceram. Soc., 7, 331-341, (2019). https://doi.org/10.1080/21870764.2019.1638540
  23. Y. M. Wie and K. G. Lee, "Optimum bloating-activation zone of artificial lightweight aggregate by dynamic parameters," Materials (Basel)., 12, 2, (2019). https://doi.org/10.3390/ma12010002
  24. Korean Standards Association. "Fly ash" Seoul: South Korea KS L 5405, (2018).
  25. Korean Standards Association. "Standard test method for bulk density and solid contents in aggregates" Seoul: South Korea KS F 2503, (2017).
  26. Republic of Korea Ministry of Environment Notice 2016-196 "Waste Process Test Standard"
  27. G. Cougny, "Specifications sur les matieres premieres argileuses pour la fabrication de granulats legers expanses," Bull. Int. Assoc. Eng. Geol. - Bull. l'Association Int. Geologie l'Ingenieur, vol. 41, no. 1, pp. 47-55, (1990). https://doi.org/10.1007/BF02590206
  28. Y. M. Wie, K. G. Lee, K. H. Lee "Physicochemical effect of the aeration rate on bloating characterizations of artificial lightweight aggregate" Constr. Build. Mater. 256 119444, (2020). https://doi.org/10.1016/j.conbuildmat.2020.119444
  29. C. Molinari, C. Zanelli, G. Guarini, M. Dondi "Bloating mechanism in ligheweight aggregates: Effect of Processing variables and properties of the vitreous phase" Constr. Build. Mater. 261 119980, (2020). https://doi.org/10.1016/j.conbuildmat.2020.119980
  30. M. Balapour, R. Rao, E. J. Garboczi, S. Spatari, Y. G. Hsuan, P. Billen, Y. Farnam "Thermochemical principles of the production of lightweight aggregates from waste coal bottom ash" J. Am. Ceram. Soc., 00, 17458, (2020).
  31. J. M. Moreno-Maroto, C. J. Cobo-Ceacero, M. Uceda-Rodriguez, T. Cotes-Palomino, C. M. Garcia, J Alonso-Azcarate, "Unraveling the expansion mechanism in lightweight aggregates: Demonstrating that bloating barely requires gas" Constr. Build. Mater. 247 118583, (2020). https://doi.org/10.1016/j.conbuildmat.2020.118583
  32. K. H. Lee, J. H. Lee, Y. M. Wie, and K. G. Lee, "Bloating Mechanism of Lightweight Aggregates due to Ramping Rate," vol. 2019, Article ID2647391, (2019).
  33. B. Ayati, V. Ferrandiz-Mas, D. Newport, and C. Cheeseman, "Use of clay in the manufacture of lightweight aggregate," Constr. Build. Mater., 162, 124-131, (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.018
  34. K. G. Lee "Bloating mechanism of lightweight aggregate with the size" J. Korean Ceram. Soc., 53, 241-245, (2016). https://doi.org/10.4191/kcers.2016.53.2.241
  35. Y. M. Wie, K. G. Lee "Correlation to the physical properties of green and sintered body of artificial lightweight aggregate with the pelletizing variables", J. Korean Ceram. Soc. 44 568-573, (2007). https://doi.org/10.4191/KCERS.2007.44.1.568
  36. Y. M. Wie, K. G. Lee "Evaporation and Stabilization of Heavy Metals with Colloid/Interface Properties in EAF Dust-Clay Bodies" Mater. Sci. Forum 544-545 569-572, (2007). https://doi.org/10.4028/www.scientific.net/msf.544-545.569
  37. J. H. Kim, K. G. Lee, Y. T. Kim, S. K. Kang "Thermal and Leaching Behaviors of EAF Dust-Clay Systems." Mater. Sci. Forum 486-487 105-108, (2005). https://doi.org/10.4028/www.scientific.net/msf.486-487.105
  38. A. Jena, & K. Gupta, "Characterization of pore structure of filtration media." Fluid/Particle Separation Journal, 14(3), 227-241. (2002).
  39. A. L. Bulta, G. A. W. Micheal "Evaluation of the efficiency of ceramic filters for water treatment in Kambata Tabaro zone, southern Ethiopia" Environ. Syst. Res. 8 1, (2019). https://doi.org/10.1186/s40068-018-0129-6