DOI QR코드

DOI QR Code

Understanding the Left Right Judgement Test: A Literature Review

  • Kim, Asall (Department of Physical Therapy, The Graduate School, Yonsei University) ;
  • Yi, Chung-hwi (Department of Physical Therapy, College of Software and Digital Healthcare Convergence, Yonsei University)
  • Received : 2021.09.15
  • Accepted : 2021.10.01
  • Published : 2021.11.20

Abstract

Background: The body schema, which is constantly updated using somatosensory information, enables accurate movement. Since pain is reported as a possible source to alter the body schema, the left right judgement test (LRJT) has been widely used in the pain rehabilitation. However, there was a lack of consistency in the effect of the pain on the LRJT results, and for the effect of the LRJT as a part of intervention programs for pain patients. The deeper understand of the LRJT is necessary for better reproducibility, and to expand the therapeutic applications of the LRJT in the pain and musculoskeletal rehabilitation. Objects: This literature review aimed to understand the LRJT and to study the potential of the LRJT for therapeutic applications. Methods: The PubMed database was searched for studies relevant to LRJT. To establish the query set, the term was regarded from various perspectives. Results: The selected studies were classified into three categories: LRJT development, factors influencing LRJT, and therapeutic applications. Conclusion: Left right judgement test is the evaluation tool for the integrity of body schema as well as a tool for implicit motor imagery. Pain, proprioception, and other factors influence the performance of the LRJT.

Keywords

Acknowledgement

This study was supported by the "Brain Korea 21 FOUR Project", the Korean Research Foundation for Department of Physical Therapy in the Graduate School of Yonsei University

References

  1. Parsons LM. Imagined spatial transformation of one's body. J Exp Psychol Gen 1987;116(2):172-91. https://doi.org/10.1037/0096-3445.116.2.172
  2. Parsons LM. Imagined spatial transformations of one's hands and feet. Cogn Psychol 1987;19(2):178-241. https://doi.org/10.1016/0010-0285(87)90011-9
  3. Parsons LM. Integrating cognitive psychology, neurology and neuroimaging. Acta Psychol (Amst) 2001;107(1-3):155-81. https://doi.org/10.1016/S0001-6918(01)00023-3
  4. Head H, Holmes G. Sensory disturbances from cerebral lesions. Brain 1911;34(2-3):102-254. https://doi.org/10.1093/brain/34.2-3.102
  5. Cardinali L. Body Schema plasticity after tool-use. Villeurbanne, Universite Claude Bernard Lyon I, Doctoral Dissertation. 2011.
  6. Coslett HB, Medina J, Kliot D, Burkey AR. Mental motor imagery indexes pain: the hand laterality task. Eur J Pain 2010;14(10):1007-13. https://doi.org/10.1016/j.ejpain.2010.04.001
  7. Coslett HB, Medina J, Kliot D, Burkey A. Mental motor imagery and chronic pain: the foot laterality task. J Int Neuropsychol Soc 2010;16(4):603-12. https://doi.org/10.1017/S1355617710000299
  8. Breckenridge JD, Ginn KA, Wallwork SB, McAuley JH. Do people with chronic musculoskeletal pain have impaired motor imagery? A meta-analytical systematic review of the left/right judgment task. J Pain 2019;20(2):119-32. https://doi.org/10.1016/j.jpain.2018.07.004
  9. Bowering KJ, O'Connell NE, Tabor A, Catley MJ, Leake HB, Moseley GL, et al. The effects of graded motor imagery and its components on chronic pain: a systematic review and metaanalysis. J Pain 2013;14(1):3-13. https://doi.org/10.1016/j.jpain.2012.09.007
  10. Harms A, Heredia-Rizo AM, Moseley GL, Hau R, Stanton TR. A feasibility study of brain-targeted treatment for people with painful knee osteoarthritis in tertiary care. Physiother Theory Pract 2020;36(1):142-56. https://doi.org/10.1080/09593985.2018.1482391
  11. Lundquist CB, Nielsen JF. Left/right judgement does not influence the effect of mirror therapy after stroke. Disabil Rehabil 2014;36(17):1452-6. https://doi.org/10.3109/09638288.2013.849763
  12. Breckenridge JD, McAuley JH, Butler DS, Stewart H, Moseley GL, Ginn KA. The development of a shoulder specific left/right judgement task: validity & reliability. Musculoskelet Sci Pract 2017;28:39-45. https://doi.org/10.1016/j.msksp.2017.01.009
  13. Hyde C, Fuelscher I, Lum JA, Williams J, He J, Enticott PG. Primary motor cortex excitability is modulated during the mental simulation of hand movement. J Int Neuropsychol Soc 2017;23(2):185-93. https://doi.org/10.1017/s1355617717000029
  14. Zimney KJ, Wassinger CA, Goranson J, Kingsbury T, Kuhn T, Morgan S. The reliability of card-based and tablet-based left/right judgment measurements. Musculoskelet Sci Pract 2018;33:105-9. https://doi.org/10.1016/j.msksp.2017.09.002
  15. Williams LJ, Braithwaite FA, Leake HB, McDonnell MN, Peto DK, Lorimer Moseley G, et al. Reliability and validity of a mobile tablet for assessing left/right judgements. Musculoskelet Sci Pract 2019;40:45-52. https://doi.org/10.1016/j.msksp.2019.01.010
  16. Breckenridge JD, McAuley JH, Butler DS, Stewart H, Moseley GL, Ginn KA. Reply to the letter to the editor 're: the development of a shoulder specific left/right judgement task: validity & reliability'. Musculoskelet Sci Pract 2017;30:e88-9. https://doi.org/10.1016/j.msksp.2017.04.008
  17. Punt TD. Re: the development of a shoulder specific left/right judgement task: validity & reliability. Musculoskelet Sci Pract 2017;30:e87. https://doi.org/10.1016/j.msksp.2017.04.007
  18. Alazmi L, Gadsby GE, Heneghan NR, Punt TD. Do trunk-based left/right judgment tasks elicit motor imagery? Musculoskelet Sci Pract 2018;35:55-60. https://doi.org/10.1016/j.msksp.2018.03.002
  19. Conson M, De Bellis F, Baiano C, Zappullo I, Raimo G, Finelli C, et al. Sex differences in implicit motor imagery: evidence from the hand laterality task. Acta Psychol (Amst) 2020;203:103010. https://doi.org/10.1016/j.actpsy.2020.103010
  20. Raimo S, Boccia M, Di Vita A, Cropano M, Guariglia C, Grossi D, et al. The body across adulthood: on the relation between interoception and body representations. Front Neurosci 2021;15:586684. https://doi.org/10.3389/fnins.2021.586684
  21. Raimo S, Di Vita A, Boccia M, Iona T, Cropano M, Gaita M, et al. The body across the lifespan: on the relation between interoceptive sensibility and high-order body representations. Brain Sci 2021;11(4):493. https://doi.org/10.3390/brainsci11040493
  22. Zapparoli L, Saetta G, De Santis C, Gandola M, Zerbi A, Banfi G, et al. When I am (almost) 64: the effect of normal ageing on implicit motor imagery in young elderlies. Behav Brain Res 2016;303:137-51. https://doi.org/10.1016/j.bbr.2016.01.058
  23. Takeda K, Shimoda N, Sato Y, Ogano M, Kato H. Reaction time differences between left- and right-handers during mental rotation of hand pictures. Laterality 2010;15(4):415-25. https://doi.org/10.1080/13576500902938105
  24. Mellet E, Mazoyer B, Leroux G, Joliot M, Tzourio-Mazoyer N. Cortical asymmetries during hand laterality task vary with hand laterality: a fMRI study in 295 participants. Front Hum Neurosci 2016;10:628.
  25. Saetta G, Brugger P, Schrohe H, Lenggenhager B. Putting yourself in the skin of in- or out-group members: no effect of implicit biases on egocentric mental transformation. Front Psychol 2019;10:1338. https://doi.org/10.3389/fpsyg.2019.01338
  26. Nico D, Daprati E, Rigal F, Parsons L, Sirigu A. Left and right hand recognition in upper limb amputees. Brain 2004;127(Pt 1):120-32. https://doi.org/10.1093/brain/awh006
  27. Brady N, Maguinness C, Ni Choisdealbha A. My hand or yours? Markedly different sensitivity to egocentric and allocentric views in the hand laterality task. PLoS One 2011;6(8):e23316. https://doi.org/10.1371/journal.pone.0023316
  28. De Bellis F, Trojano L, Errico D, Grossi D, Conson M. Whose hand is this? Differential responses of right and left extrastriate body areas to visual images of self and others' hands. Cogn Affect Behav Neurosci 2017;17(4):826-37. https://doi.org/10.3758/s13415-017-0514-z
  29. Meugnot A, Toussaint L. Functional plasticity of sensorimotor representations following short-term immobilization of the dominant versus non-dominant hands. Acta Psychol (Amst) 2015;155:51-6. https://doi.org/10.1016/j.actpsy.2014.11.013
  30. Meugnot A, Agbangla NF, Toussaint L. Selective impairment of sensorimotor representations following shortterm upper-limb immobilization. Q J Exp Psychol (Hove) 2016;69(9):1842-50. https://doi.org/10.1080/17470218.2015.1125376
  31. Toussaint L, Meugnot A, Bidet-Ildei C. Short-term upper limb immobilisation impairs grasp representation. Q J Exp Psychol (Hove) 2021;74(6):1096-102. https://doi.org/10.1177/1747021820985523
  32. Silva S, Loubinoux I, Olivier M, Bataille B, Fourcade O, Samii K, et al. Impaired visual hand recognition in preoperative patients during brachial plexus anesthesia: importance of peripheral neural input for mental representation of the hand. Anesthesiology 2011;114(1):126-34. https://doi.org/10.1097/ALN.0b013e31820164f1
  33. Dey A, Barnsley N, Mohan R, McCormick M, McAuley JH, Moseley GL. Are children who play a sport or a musical instrument better at motor imagery than children who do not? Br J Sports Med 2012;46(13):923-6. https://doi.org/10.1136/bjsports-2011-090525
  34. Wallwork SB, Butler DS, Wilson DJ, Moseley GL. Are people who do yoga any better at a motor imagery task than those who do not? Br J Sports Med 2015;49(2):123-7. https://doi.org/10.1136/bjsports-2012-091873
  35. Ismail SA, Simic M, Stanton TR, Pappas E. Motor imagery in high-functioning individuals with chronic anterior cruciate ligament deficiency: a cross-sectional study. Knee 2019;26(3):545-54. https://doi.org/10.1016/j.knee.2019.02.011
  36. Wallwork SB, Butler DS, Moseley GL. Dizzy people perform no worse at a motor imagery task requiring whole body mental rotation; a case-control comparison. Front Hum Neurosci 2013;7:258. https://doi.org/10.3389/fnhum.2013.00258
  37. Barbosa AM, Jose-Jandre Dos Reis F, Caseiro M, Barbero M, Falla D, Siriani de Oliveira A. Clinical evaluation of somatosensory integrity in people with chronic shoulder pain. Musculoskelet Sci Pract 2021;53:102364. https://doi.org/10.1016/j.msksp.2021.102364
  38. Breckenridge JD, McAuley JH, Ginn KA. Motor imagery performance and tactile spatial acuity: are they altered in people with frozen shoulder? Int J Environ Res Public Health 2020;17(20):7464. https://doi.org/10.3390/ijerph17207464
  39. Breckenridge JD, McAuley JH, Moseley GL, Ginn KA. Is implicit motor imagery altered in people with shoulder pain? The shoulder left/right judgement task. Musculoskelet Sci Pract 2020;48:102159. https://doi.org/10.1016/j.msksp.2020.102159
  40. Magni NE, McNair PJ, Rice DA. Sensorimotor performance and function in people with osteoarthritis of the hand: a casecontrol comparison. Semin Arthritis Rheum 2018;47(5):676-82. https://doi.org/10.1016/j.semarthrit.2017.09.008
  41. Mena-Del Horno S, Balasch-Bernat M, Duenas L, Reis F, Louw A, Lluch E. Laterality judgement and tactile acuity in patients with frozen shoulder: a cross-sectional study. Musculoskelet Sci Pract 2020;47:102136. https://doi.org/10.1016/j.msksp.2020.102136
  42. Pelletier R, Higgins J, Bourbonnais D. Laterality recognition of images, motor performance, and aspects related to pain in participants with and without wrist/hand disorders: an observational cross-sectional study. Musculoskelet Sci Pract 2018;35:18-24. https://doi.org/10.1016/j.msksp.2018.01.010
  43. Schmid AB, Coppieters MW. Left/right judgment of body parts is selectively impaired in patients with unilateral carpal tunnel syndrome. Clin J Pain 2012;28(7):615-22. https://doi.org/10.1097/AJP.0b013e31823e16b9
  44. Wiebusch M, Coombes BK, Silva MF. Joint position sense, motor imagery and tactile acuity in lateral elbow tendinopathy: a cross-sectional study. Musculoskelet Sci Pract 2021;55:102422. https://doi.org/10.1016/j.msksp.2021.102422
  45. Summers SJ, Chalmers KJ, Wallwork SB, Leake HB, Moseley GL. Interrogating cortical representations in elite athletes with persistent posterior thigh pain - new targets for intervention? J Sci Med Sport 2021;24(2):135-40. https://doi.org/10.1016/j.jsams.2020.07.003
  46. Tompra N, van Dieen JH, Plinsinga ML, Coppieters MW. Left/right discrimination is not impaired in people with unilateral chronic Achilles tendinopathy. Musculoskelet Sci Pract 2021;54:102388. https://doi.org/10.1016/j.msksp.2021.102388
  47. Stanton TR, Lin CW, Bray H, Smeets RJ, Taylor D, Law RY, et al. Tactile acuity is disrupted in osteoarthritis but is unrelated to disruptions in motor imagery performance. Rheumatology (Oxford) 2013;52(8):1509-19. https://doi.org/10.1093/rheumatology/ket139
  48. Stanton TR, Lin CW, Smeets RJ, Taylor D, Law R, Lorimer Moseley G. Spatially defined disruption of motor imagery performance in people with osteoarthritis. Rheumatology (Oxford) 2012;51(8):1455-64. https://doi.org/10.1093/rheumatology/kes048
  49. Martinez E, Guillen V, Buesa I, Azkue JJ. A distorted body schema and susceptibility to experiencing anomalous somatosensory sensations in fibromyalgia syndrome. Clin J Pain 2019;35(11):887-93. https://doi.org/10.1097/ajp.0000000000000754
  50. Wallwork SB, Leake HB, Peek AL, Moseley GL, Stanton TR. Implicit motor imagery performance is impaired in people with chronic, but not acute, neck pain. PeerJ 2020;8:e8553. https://doi.org/10.7717/peerj.8553
  51. Meier R, Iten P, Luomajoki H. Clinical assessments can discriminate altered body perception in patients with unilateral chronic low back pain, but not differences between affected and unaffected side. Musculoskelet Sci Pract 2019;39:136-43. https://doi.org/10.1016/j.msksp.2018.12.006
  52. Bray H, Moseley GL. Disrupted working body schema of the trunk in people with back pain. Br J Sports Med 2011;45(3):168-73. https://doi.org/10.1136/bjsm.2009.061978
  53. Heerkens RJ, Koke AJ, Lotters FJ, Smeets RJ. Motor imagery performance and tactile acuity in patients with complaints of arms, neck and shoulder. Pain Manag 2018;8(4):277-86. https://doi.org/10.2217/pmt-2017-0070
  54. von Piekartz H, Wallwork SB, Mohr G, Butler DS, Moseley GL. People with chronic facial pain perform worse than controls at a facial emotion recognition task, but it is not all about the emotion. J Oral Rehabil 2015;42(4):243-50. https://doi.org/10.1111/joor.12249
  55. Bourrelier J, Kubicki A, Rouaud O, Crognier L, Mourey F. Mental rotation as an indicator of motor representation in patients with mild cognitive impairment. Front Aging Neurosci 2015;7:238.
  56. Campione GC, Mansi G, Fumagalli A, Fumagalli B, Sottocornola S, Molteni M, et al. Motor-based bodily self is selectively impaired in eating disorders. PLoS One 2017;12(11):e0187342. https://doi.org/10.1371/journal.pone.0187342
  57. Conson M, Mazzarella E, Frolli A, Esposito D, Marino N, Trojano L, et al. Motor imagery in Asperger syndrome: testing action simulation by the hand laterality task. PLoS One 2013;8(7):e70734. https://doi.org/10.1371/journal.pone.0070734
  58. Conson M, Pistoia F, Sara M, Grossi D, Trojano L. Recognition and mental manipulation of body parts dissociate in locked-in syndrome. Brain Cogn 2010;73(3):189-93. https://doi.org/10.1016/j.bandc.2010.05.001
  59. Conson M, Sacco S, Sara M, Pistoia F, Grossi D, Trojano L. Selective motor imagery defect in patients with locked-in syndrome. Neuropsychologia 2008;46(11):2622-8. https://doi.org/10.1016/j.neuropsychologia.2008.04.015
  60. Hyde C, Fuelscher I, Williams J, Lum JAG, He J, Barhoun P, et al. Corticospinal excitability during motor imagery is reduced in young adults with developmental coordination disorder. Res Dev Disabil 2018;72:214-24. https://doi.org/10.1016/j.ridd.2017.11.009
  61. Saetta G, Zindel-Geisseler O, Stauffacher F, Serra C, Vannuscorps G, Brugger P. Asomatognosia: structured interview and assessment of visuomotor imagery. Front Psychol 2021;11:544544. https://doi.org/10.3389/fpsyg.2020.544544
  62. Fiori F, Sedda A, Ferre ER, Toraldo A, Querzola M, Pasotti F, et al. Motor imagery in spinal cord injury patients: moving makes the difference. J Neuropsychol 2014;8(2):199-215. https://doi.org/10.1111/jnp.12020
  63. Ding L, Wang X, Guo X, Chen S, Wang H, Jiang N, et al. Camera-based mirror visual feedback: potential to improve motor preparation in stroke patients. IEEE Trans Neural Syst Rehabil Eng 2018;26(9):1897-905. https://doi.org/10.1109/tnsre.2018.2864990
  64. Ding L, Wang X, Guo X, Chen S, Wang H, Cui X, et al. Effects of camera-based mirror visual feedback therapy for patients who had a stroke and the neural mechanisms involved: protocol of a multicentre randomised control study. BMJ Open 2019;9(3):e022828. https://doi.org/10.1136/bmjopen-2018-022828
  65. Strauss S, Barby S, Hartner J, Neumann N, Moseley GL, Lotze M. Modifications in fMRI representation of mental rotation following a 6 week graded motor imagery training in chronic CRPS patients. J Pain 2021;22(6):680-91. https://doi.org/10.1016/j.jpain.2020.12.003
  66. Johnson S, Hall J, Barnett S, Draper M, Derbyshire G, Haynes L, et al. Using graded motor imagery for complex regional pain syndrome in clinical practice: failure to improve pain. Eur J Pain 2012;16(4):550-61. https://doi.org/10.1002/j.1532-2149.2011.00064.x
  67. Bean DJ, Johnson MH, Heiss-Dunlop W, Lee AC, Kydd RR. Do psychological factors influence recovery from complex regional pain syndrome type 1? A prospective study. Pain 2015;156(11):2310-8. https://doi.org/10.1097/j.pain.0000000000000282
  68. Meugnot A, Agbangla NF, Almecija Y, Toussaint L. Motor imagery practice may compensate for the slowdown of sensorimotor processes induced by short-term upper-limb immobilization. Psychol Res 2015;79(3):489-99. https://doi.org/10.1007/s00426-014-0577-1