DOI QR코드

DOI QR Code

Radiated disturbance characteristics of SiC MOSFET module

  • Huang, Huazhen (State Key Lab of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University) ;
  • Wang, Ningyan (Fujian Electrical Power Research Institute) ;
  • Wu, Jialing (State Key Lab of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University) ;
  • Lu, Tiebing (State Key Lab of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University)
  • Received : 2020.07.29
  • Accepted : 2020.11.13
  • Published : 2021.02.20

Abstract

Wide band gap semiconductor device silicon carbide (SiC) metal oxide semiconductor field effect transistors (MOSFETs) have many advantages and are considered to be the most promising alternative to silicon (Si) insulated gate bipolar transistors (IGBTs) in low-/medium-voltage fields. However, a faster switching speed results in more serious electromagnetic disturbance problems in the application of SiC MOSFET. In this paper, an experiment system is established to measure the radiated disturbance of a single SiC MOSFET module operating at 9 kHz-300 MHz. The radiated electric fields of the SiC MOSFET module are mainly concentrated within 160 MHz. The switching voltage and radiated disturbance of the Si IGBT module are measured and compared with those of the SiC MOSFET module. The voltage of the SiC MOSFET has a faster change rate and a higher overshoot, which results in the radiated electric fields of SiC MOSFET module being 5-10 dB higher than those of the Si IGBT module below 8 MHz. The measurement results in the time-domain and frequency-domain correspond. A detailed model of a SiC MOSFET module is established and the radiated electric fields are calculated using the method of moments (MOM). The calculated results show the effectiveness of the model for radiated disturbance prediction. In this paper, the radiated electric fields of a SiC MOSFET module are measured and analyzed, and the calculation model can be used to further evaluate the radiated disturbance characteristics of SiC MOSFET and influencing factors.

Keywords

Acknowledgement

This work was supported by Research Project of State Grid of China under No. 52130419000M.

References

  1. Millan, J., Godignon, P., Perpina, X., et al.: A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29(5), 2155-2163 (2014) https://doi.org/10.1109/TPEL.2013.2268900
  2. Sheng, K., Guo, Q., Zhang, J., et al.: Development and prospect of SiC power devices in power grid. Proc. CSEE. 32(30), 1-7 (2012)
  3. Richmond, J., Ryu, S.-H., Das, M., et al.: An overview of Cree silicon carbide power devices. In: Power electronics in transportation, Novi, MI, USA, pp. 37-42 (2004)
  4. Chen, C., Luo, F., Kang, Y.: A review of SiC power module packaging: layout, material system and integration. CPSS Trans. Power Electron. Appl. 2(3), 170-186 (2017) https://doi.org/10.24295/CPSSTPEA.2017.00017
  5. Liang, M., Zheng, Q., Ke, C., et al.: Performance comparison of SiC MOSFET, Si CoolMOS and IGBT for DAB converter. Trans. China Electrotech. Soc. 30(12), 41-50 (2015)
  6. DiMarino, C., Chen, Z., Danilovic, M., et al.: High-temperature characterization and comparison of 1.2 kV SiC power MOSFETs. In: 2013 IEEE energy conversion congress and exposition, Denver, CO, pp. 3235-3242 (2013)
  7. Sabri, S., Brunt, E.V., Barkley, A., et al.: New generation 6.5 kV SiC power MOSFET. In: 2017 IEEE 5th workshop on wide bandgap power devices and applications (WiPDA), Albuquerque, NM, pp. 246-250 (2017)
  8. Gendron-Hansen, A., Hong, C., Jiang, Y., et al.: High-performance 700 V SiC MOSFETs for the industrial market. In: 2019 IEEE 7th workshop on wide bandgap power devices and applications (WiPDA), Raleigh, NC, USA, pp. 410-415 (2019)
  9. Liang, M., Zheng, T.Q., Li, Y.: An improved analytical model for predicting the switching performance of SiC MOSFETs. J. Power Electron. 16(1), 374-387 (2016) https://doi.org/10.6113/JPE.2016.16.1.374
  10. Oswald, N., Anthony, P., Mcneill, N., et al.: An experimental investigation of the tradeoff between switching losses and EMI generation with hard-switched all-Si, Si-SiC, and all-SiC device combinations. IEEE Trans. Power Electron. 29(5), 2393-2407 (2014) https://doi.org/10.1109/TPEL.2013.2278919
  11. Tiwari, S., Basu, S., Undeland, T.M., et al.: Efifciency and conducted EMI evaluation of a single-phase power factor correction boost converter using state-of-the-art SiC MOSFET and SiC diode. IEEE Trans. Ind. Appl. 55(6), 7745-7756 (2019) https://doi.org/10.1109/tia.2019.2919266
  12. Zhang, L., Yuan, X., Wu, X., et al.: Performance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules. IEEE Trans. Power Electron. 34(2), 1181-1196 (2019) https://doi.org/10.1109/tpel.2018.2834345
  13. Sivkov, O., Novak, M., Novak, J.: Comparison between Si IGBT and SiC MOSFET inverters for AC motor drive. In: 2018 18th International conference on mechatronics - mechatronika (ME), Brno, Czech Republic, pp. 1-5 (2018)
  14. Jahdi, S., Alatise, O., Ortiz Gonzalez, J.A., et al.: Temperature and switching rate dependence of crosstalk in Si-IGBT and SiC power modules. IEEE Trans. Ind. Electron. 63(2), 849-863 (2016) https://doi.org/10.1109/TIE.2015.2491880
  15. Ke, J., Zhao, Z., Xie, Z., et al.: Analysis of switching clamped oscillations of SiC MOSFETs. J. Power Electron. 18(3), 892-901 (2018) https://doi.org/10.6113/JPE.2018.18.3.892
  16. Gong, X., Ferreira, J.A.: Comparison and reduction of conducted EMI in SiC JFET and Si IGBT-based motor drives. IEEE Trans. Power Electron. 29(4), 1757-1767 (2014) https://doi.org/10.1109/TPEL.2013.2271301
  17. Ozaki, T., Funaki, T., Ibuchi, T.: An experimental study on conducted noise emission for PMSM drive with SiC inverter: Conducted noise reduction by snubber circuit. In: 2017 IV International electromagnetic compatibility conference (EMC Turkiye), Ankara, pp. 1-6 (2017)
  18. Consoli, A., Musumeci, S., Oriti, G., et al.: An innovative EMI reduction design technique in power converters. IEEE Trans. Electromagn. Compat. 38(4), 567-575 (1996) https://doi.org/10.1109/15.544311
  19. Tanaka, H., Suzuki, K., Kitagawa, W., et al.: Conducted noise reduction on AC/DC converter using SiC-MOSFET. In: 2016 IEEE international conference on renewable energy research and applications (ICRERA), Birmingham, pp. 341-346 (2016)
  20. Gong, X., Josifovic, I., Ferreira, J.A.: Comprehensive CM filter design to suppress conducted EMI for SiC-JFET motor drives. In: 8th International conference on power electronics - ECCE Asia, Jeju, pp. 720-727 (2011)
  21. Huang, H., Lu, T., Wu, J., et al: Radiated disturbance of SiC MOSFET in comparison to Si IGBT. In: 2020 IEEE international symposium on electromagnetic compatibility & signal/power integrity (EMCSI), Reno, USA (2020)
  22. Roscoe, N.M., Holliday, D., Mcneill, N., et al.: LV converters: improving efficiency and EMI using Si MOSFET MMC and experimentally exploring slowed switching. IEEE J. Emerging Sel. Top. Power Electron. 6(4), 2159-2172 (2018) https://doi.org/10.1109/jestpe.2018.2811320
  23. Industrial, scientific and medical equipment-radio-frequency disturbance characteristics-limits and methods of measurement, IEC CISPR 11, Standard (2015)
  24. Zhang, J., Lu, T., Zhang, W., et al.: Characteristics and influence factors of radiated disturbance induced by IGBT switching. IEEE Trans. Power Electron. 34(12), 11833-11842 (2019) https://doi.org/10.1109/tpel.2019.2913463
  25. Li, H., Munknielsen, S.: Challenges in switching SiC MOSFET without ringing. In: PCIM Europe international exhibition and conference for power electronics, intelligent motion, renewable energy and energy management, Nuremberg, Germany, pp. 1-6 (2014)
  26. Rao, S., Wilton, D., Glisson, A.: Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30(3), 409-418 (1982) https://doi.org/10.1109/TAP.1982.1142818
  27. Yuan, J., Gu, C., Han, G.: Efficient generation of method of moments matrices using equivalent dipole-moment method. IEEE Antennas Wirel. Propag. Lett. 8, 716-719 (2009) https://doi.org/10.1109/LAWP.2009.2024337