DOI QR코드

DOI QR Code

Online monitoring of IGBT junction temperature based on Vce measurement

  • Cao, Han (Key Laboratory of Power Electronics and Electric Drive, Institute of Electrical Engineering, Chinese Academy of Sciences) ;
  • Ning, Puqi (Key Laboratory of Power Electronics and Electric Drive, Institute of Electrical Engineering, Chinese Academy of Sciences) ;
  • Chai, Xiaoguang (Key Laboratory of Power Electronics and Electric Drive, Institute of Electrical Engineering, Chinese Academy of Sciences) ;
  • Zheng, Dan (Key Laboratory of Power Electronics and Electric Drive, Institute of Electrical Engineering, Chinese Academy of Sciences) ;
  • Kang, Yuhui (Key Laboratory of Power Electronics and Electric Drive, Institute of Electrical Engineering, Chinese Academy of Sciences) ;
  • Wen, Xuhui (Key Laboratory of Power Electronics and Electric Drive, Institute of Electrical Engineering, Chinese Academy of Sciences)
  • Received : 2020.06.28
  • Accepted : 2020.10.29
  • Published : 2021.02.20

Abstract

In this paper, an online junction temperature monitoring method based on the on-state voltage under high collector current density measurements for IGBT power modules is proposed. Unlike the conventional junction temperature monitoring method, the presented method can extract the junction temperature during operation without altering the modulation strategy or topology of the converter. The proposed method is verified by simulations and the JEDEC-51 standard recommended approach. To accurately extract the on-state voltage during operation, a measurement circuit that combines the advantages of both the active MOSFET clamp and the diode clamp is designed and tested. It has been shown to have good accuracy and a rapid response time. After the calibration results are obtained, the presented method is applied to a three-phase voltage source converter controlled by a closed-loop SVPWM modulation strategy.

Keywords

Acknowledgement

This work is supported by The National key research and development program of China (2016YFB0100600), the Key Program of Bureau of Frontier Sciences and Education, Chinese Academy of Sciences (QYZDBSSW-JSC044).

References

  1. Yang, X., Lin, Z., Ding, J., Long, Z.: Lifetime prediction of IGBT modules in suspension choppers of medium/low-speed maglev train using an energy-based approach. IEEE Trans. Power Electron. 34(1), 738-747 (2019) https://doi.org/10.1109/TPEL.2018.2812732
  2. Senturk. O. S., Nielsn. S. M., Teodorescu. R., Helle. L., Rodriguez. P.: Electro-thermal modeling for junction temperature cycling-based lifetime prediction of a press-pack IGBT 3L-NPC-VSC applied to large wind turbines. In Proc. IEEE Energy Conversion Congress and Exposition, 17-22 (2011)
  3. Zhang. Y., Wang. H., Wang. Z., Yang. Y., Blaabjerg. F.: Impact of lifetime model selections on the reliability prediction of IGBT modules in modular multilevel converters. In Proc. IEEE Energy Conversion Congress and Exposition, 1-5 (2017)
  4. Slawinski. M, Sahan. B., Jansen. U.: Evaluation of a NPC1 phase leg built from three standard IGBT modules for 1500 VDC photovoltaic central inverters up to 800 kVA. In Proc. IEEE Energy Con-version Congress and Exposition, 5-9 (2016)
  5. Mehrotra. V., He. H., Dadkhah. M. S., Rugg. K., Shaw. M. C.: Wirebond reliability in IGBT-power modules: application of high resolution strain and temperature mapping. In Proc. IEEE Power Electronics Specialists Conference, 23-27 (2016)
  6. Murdock, D., Torres, J., Connors, J., Lorenz, R.D.: Active thermal control of power electronic modules. IEEE Trans. Ind. Appl. 42(2), 552-558 (2006) https://doi.org/10.1109/TIA.2005.863905
  7. Weckert. M., Roth-Stielow. J.: Lifetime as a control variable in power electronic systems. In Proc. Emobility - Electrical Power Train, 1-6 (2010)
  8. Marwali, M.N., Jung, J.W., Keyhani, A.: Control of distributed generation systems-part II: load sharing control. IEEE Trans. Power Electron. 19(6), 1551-1561 (2004) https://doi.org/10.1109/TPEL.2004.836634
  9. Ma, K., Liserre, M., Blaabjerg, F.: Reactive power influence on the thermal cycling of MW wind power inverter. IEEE Trans. Ind. Appl. 49(2), 922-930 (2013) https://doi.org/10.1109/TIA.2013.2240644
  10. Ma. K., Liserre. M., Blaabjerg. F.: Reactive power control methods for improved reliability of wind power inverters under wind speed variations. In Proc. IEEE Energy Conversion Congress and Exposition, 3105-3112 (2012)
  11. Wu. T., Castellazzi. A: A. Temperature adaptive IGBT gate-driver design. In Proc. European Conference Power Electronics Applications, 1-6 (2011)
  12. JeHwan. L., HanGuean. H., SangChul. S., Kiyoung. J., JinHwan. J.: Over temperature protection in power module for hybrid and electric vehicle. In Proc. Transportation Electrification Conference and Expo, Asia-Pacific, 432-435 (2011)
  13. Ning, P., Yuan, T., Kang, Y., Cao, H., Li, L.: Review of Si IGBT and SiC MOSFET based on hybrid switch. Chin J Electr Eng 5(3), 20-29 (2019) https://doi.org/10.23919/cjee.2019.000017
  14. Jiang, D., Ning, P., Lai, R., Fang, Z., Wang, F.: Modular design method for motor drives. Chin. J. Electr. Eng. 4(1), 1-10 (2018) https://doi.org/10.23919/cjee.2018.8327365
  15. Jiang, F., Li, Y., Tu, C., Guo, Q., Li, H.: A review of series voltage source converter with fault current limiting function. Chin J Electr Eng 4(1), 36-44 (2018) https://doi.org/10.23919/cjee.2018.8327369
  16. Dankovic, D., Mitrovic, N., Prijic, Z., Stojadinovic, N.D.: Modeling of NBTS efects in P-channel power VDMOSFETs. IEEE T Device Mat Re. 20(1), 204-213 (2020) https://doi.org/10.1109/TDMR.2020.2974131
  17. Mahapatra, S., Parihar, N.: Modeling of NBTI Using BAT framework: DC-AC stress-recovery kinetics, material, and process dependence. IEEE T Device Mat Re. 20(1), 4-23 (2020) https://doi.org/10.1109/TDMR.2020.2967696
  18. Dankovic, D., Manic, I., Davidovic, V., Djoric-Veljkovic, S., Golubovic, S., Stojadinovic, N.: Negative bias temperature instability in n-channel power VDMOSFETs. Microelectron Reliab. 48(8), 1313-1317 (2008) https://doi.org/10.1016/j.microrel.2008.06.015
  19. Baker, N., Liserre, M., Dupont, L., Avenas, Y.: Improved reliability of power modules: a re-view of online junction temperature measurement methods. IEEE Ind. Electron. M. 8(3), 17-27 (2014) https://doi.org/10.1109/MIE.2014.2312427
  20. Yang, S., Bryant, A., Mawby, P., Xiang, D., Ran, L., Tavner, P.: An Industry-based survey of reliability in power electronic converters. IEEE T Ind. Appl. 47(3), 1441-1451 (2011) https://doi.org/10.1109/TIA.2011.2124436
  21. Sintamarean. C., Blaabjerg. F., Wang. H.: A novel electro-thermal model for wide bandgap semi-conductor based devices. In Proc. European Conference on Power Electronics and Applications (EPE), 1-10 (2013)
  22. Chen. H., Ji. B., Pickert. V., Cao. W.: Real-Time Temperature estimation for power MOSFETs considering thermal aging efects. In IEEE T Device Mat Re. 14(1), 220-228 (2014) https://doi.org/10.1109/TDMR.2013.2292547
  23. Motto. E. R., Donlon. J. F.: IGBT module with user accessible on-chip current and tempera-ture sensors. In Proc. Annual IEEE Applied Power Electronics Conference and Exposition, 176-181(2012)
  24. Zhang, Z., Dyer, J., Wu, X., Wang, F., Costinett, D., Tolbert, L.M., Blalock, B.J.: Online junction temperature monitoring using intelligent gate drive for SiC power devices. IEEE Trans. Power Electron. 34(8), 7922-7932 (2018) https://doi.org/10.1109/tpel.2018.2879511
  25. Chen. H., Pickert. V., Atkinson. D. J, Pritchard. L. S.: On-line monitoring of the MOSFET device junction temperature by computation of the threshold voltage. In Proc. IET International Conference on Power Electronics, Machines and Drives, 440-444 (2006)
  26. Xu, Z., Xu, F., Wang, F.: Junction temperature measurement of igbts using short-circuit current as a temperature-sensitive electrical parameter for converter prototype evaluation. IEEE Trans. Ind. Appl. 62(6), 3419-3429 (2014)
  27. Bergogne. D., Allard. H., Morel. H.: An estimation method of the channel temperature of power MOS devices. In Proc. IEEE 31st annual power electronics specialists conference, 1594-1599 (2000)
  28. Zhu, Y., Ma, K., Cai, X.: Thermal characterization method of power semiconductors based on H-bridge testing circuit. IEEE Trans. Power Electron. 34(9), 8268-8273 (2019) https://doi.org/10.1109/tpel.2019.2900253
  29. Avenas, Y., Dupont, L., Khatir, Z.: Temperature measurement of power semiconductor de-vices by thermo-sensitive electrical parameters-a review. IEEE Trans. Power Electron. 27(6), 3081-3092 (2012) https://doi.org/10.1109/TPEL.2011.2178433
  30. Cao. H., Ning. P., Yuan. T., Wen. X.: Online monitoring of IGBT junction temperature based on Vce measurement. In Proc. International Conference on Electrical Machines and Systems, 11-14 (2019)
  31. Dupont. L., Avenas. Y.: Evaluation of thermo-sensitive electrical parameters based on the forward voltage for on-line chip temperature measurements of IGBT devices. In Proc. IEEE Energy Conversion Congress and Exposition, 4028-4035 (2014)
  32. Alonso. L., Brandelero. J., Ewanchuk. J., Mollov. S.: Indirect on-state voltage estimation using a voltage sensitive electrical parameter through the gate driver. In Proc. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 1085-1090 (2019)
  33. Frankeser. S., Hiller. S., Wachsmuth. G., Lutz. J.: Using the on-state-Vbesat-voltage for temperature estimation of SiC-BJTs during normal operation. In Proc. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 132-139(2015)
  34. Cao. H, Ning. P., Wen. X., Yuan. T., Li. H. (2020): An Electrothermal model for IGBT based on finite differential method. IEEE J. Em. Sel. Top P 8(1):673-684 https://doi.org/10.1109/JESTPE.2019.2944724
  35. Cao, H., Ning, P., Wen, X., Yuan, T.: Practical SPICE model for IGBT and PiN diode based on finite differential method. J Power Electron. 19(6), 1591-1600 (2019) https://doi.org/10.6113/jpe.2019.19.6.1591
  36. Baliga. B. J.: Fundamentals of power semiconductor devices. Chap. 9. Springer (2008)
  37. https://www.tek.com/
  38. Guacci, M., Bortis, D., Kolar, J.: On-state voltage measurement of fast switching power semiconductors. CPSS Trans Power Electron Appl 3(2), 163-176 (2018) https://doi.org/10.24295/cpsstpea.2018.00016
  39. Carsten. B.: clipping pre-amplifier for accurate scope measurement of high voltage switching transistor and diode conduction voltages. In Proc. International Power Conversion Electronics conference and Exhibit, 335-342 (1995)
  40. Wagenitz. D., Laeuschner. C., Thewes. R., Dieckerhoff. S.: Design and evaluation of a sensor for measuring the IGBT onstate saturation voltage. In Proc. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 835-839 (2015)
  41. Beczkowski. S., Ghimre. P., Ruiz de Vega. A., Munk-Nielsen. S., Rannestad. B., Thogersen. P.: Online Vce measurement method for wear-out monitoring of high power IGBT modules. In Proc. 2013 15th European Conference on Power Electronics and Applications (EPE), 2-6 (2013)

Cited by

  1. Junction temperature measurement method for IGBTs using turn-on miller plateau duration vol.21, pp.9, 2021, https://doi.org/10.1007/s43236-021-00275-z