DOI QR코드

DOI QR Code

High frequency pulse injected double stage filtering method for linear permanent magnet motor position error compensation considering parameter asymmetry

  • Yan, Jianhu (School of Automation, Nanjing University of Science and Technology) ;
  • Song, Tongyue (School of Automation, Nanjing University of Science and Technology) ;
  • Chi, Song (School of Automation, Nanjing University of Science and Technology) ;
  • Ying, Zhanfeng (School of Energy and Power Engineering, Nanjing University of Science and Technology)
  • Received : 2021.02.07
  • Accepted : 2021.05.31
  • Published : 2021.09.20

Abstract

Due to machining errors and the effect of the longitudinal end of a stator, linear permanent magnet motors (LPMMs) produce asymmetric three-phase winding resistance and inductance. After a Park transformation of the asymmetric three-phase stator inductance, the dq axis inductance is not constant, and the dq axis is coupled. This leads to errors in estimating the motor position by the traditional pulse injection method. In this paper, the position estimation error caused by parameter asymmetry is analyzed to discuss the influence of LPMM asymmetric three-phase winding parameters on high frequency pulse injection sensorless method error. Moreover, a double stage filtering method is used to realize error compensation. On this basis, a simulation model was built by MATLAB/Simulink and experiments were carried out on a LPMM prototype under no-load conditions. The simulation and experimental results verify that the double stage filtering method can improve the position estimated accuracy and dynamic performance under sensorless control.

Keywords

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 51607091.

References

  1. Cheema, M.A.M., Fletcher, J.E., Rahman, M.F., Xiao, D.: Optimal, combined speed, and direct thrust control of linear permanent magnet synchronous motors. IEEE Trans. Energy Convers. 31(3), 947-958 (2016) https://doi.org/10.1109/TEC.2016.2536201
  2. Liu, X., Zhen, S., Sun, H., Zhao, H.: A Novel model-based robust control for position tracking of permanent magnet linear motor. IEEE Trans. Ind. Electron. 67(9), 7767-7777 (2020) https://doi.org/10.1109/tie.2019.2945281
  3. Baratam, A., Karlapudy, A.M., Munagala, S.: Implementation of thrust ripple reduction for a permanent magnet linear synchronous motor using an adaptive feed forward controller. J. Power Electron. 14(4), 687-694 (2014) https://doi.org/10.6113/JPE.2014.14.4.687
  4. Ting, C., Chang, Y., Chen, Y.: Backstepping direct thrust force control for sensorless PMLSM drive. IET Electr. Power Appl. 13(3), 322-331 (2019) https://doi.org/10.1049/iet-epa.2018.5269
  5. Bang, D., Hwang, S.: Wide Air-gap control for multi-module permanent magnet linear synchronous motors without magnetic levitation windings. J. Power Electron. 16(5), 1773-1780 (2016) https://doi.org/10.6113/JPE.2016.16.5.1773
  6. Paul, S., Chang, J., Rajan, A., Mukhopadhyay, S.: Design of linear magnetic position sensor used in permanent magnet linear machine with consideration of manufacturing tolerances. IEEE Sens. J. 19(13), 5239-5248 (2019) https://doi.org/10.1109/jsen.2019.2903292
  7. Luu, P.T., Lee, J.-Y., Kim, J.-W., Chung, S.-U., Kwon, S.-M.: Magnetic sensor design for a permanent magnet linear motor considering edge-effect. IEEE Trans. Ind. Electron. 67(7), 5768-5777 (2020) https://doi.org/10.1109/tie.2019.2931518
  8. Kim, J., Choi, S., Cho, K., Nam, K.: Position estimation using linear hall sensors for permanent magnet linear motor systems. IEEE Trans. Ind. Electron. 63(12), 7644-7652 (2016) https://doi.org/10.1109/TIE.2016.2591899
  9. Li, H., Zhang, X., Xu, C., Hong, J.: Sensorless control of IPMSM using moving-average-filter based PLL on HF pulsating signal injection method. IEEE Trans. Energy Convers. 35(1), 43-52 (2020) https://doi.org/10.1109/tec.2019.2946888
  10. Zhang, Y., Yin, Z., Liu, J., Zhang, R., Sun, X.: IPMSM sensorless control using high-frequency voltage injection method with random switching frequency for audible noise improvement. IEEE Trans. Ind. Electron. 67(7), 6019-6030 (2020) https://doi.org/10.1109/tie.2019.2937042
  11. Zhang, G., Wang, G., Wang, H., Xiao, D., Li, L., Xu, D.: Pseudorandom-frequency sinusoidal injection based sensorless IPMSM drives with tolerance for system delays. IEEE Trans. Power Electron. 34(4), 3623-3632 (2019) https://doi.org/10.1109/tpel.2018.2865802
  12. Yoon, S., Kim, J.: Sensorless control of a PMSM at low speeds using high frequency voltage injection. J. Power Electron. 5(1), 11-19 (2005)
  13. Scicluna, K., Staines, C.S., Raute, R.: Sensorless low/zero speed estimation for permanent magnet synchronous machine using a search-based real-time commissioning method. IEEE Trans. Ind. Electron. 67(7), 6010-6018 (2020) https://doi.org/10.1109/tie.2020.2965483
  14. Han, B., Shi, Y., Song, X., Hong, K., Mao, K.: Initial rotor position detection method of spmsm based on new high frequency voltage injection method. IEEE Trans. Power Electron. 34(4), 3553-3562 (2019) https://doi.org/10.1109/tpel.2018.2850318
  15. Wang, G., Kuang, J., Zhao, N., Zhang, G., Xu, D.: Rotor position estimation of PMSM in low-speed region and standstill using zero-voltage vector injection. IEEE Trans. Power Electron. 33(9), 7948-7958 (2018) https://doi.org/10.1109/tpel.2017.2767294
  16. Lin, T.C., Zhu, Z.Q.: Sensorless operation capability of surface-mounted permanent-magnet machine based on high-frequency signal injection methods. IEEE Trans. Ind. Appl. 51(3), 2161-2171 (2015) https://doi.org/10.1109/TIA.2014.2382762