Acknowledgement
This work was supported in part by the National Natural Science Foundation of China under Grant 51607091.
References
- Cheema, M.A.M., Fletcher, J.E., Rahman, M.F., Xiao, D.: Optimal, combined speed, and direct thrust control of linear permanent magnet synchronous motors. IEEE Trans. Energy Convers. 31(3), 947-958 (2016) https://doi.org/10.1109/TEC.2016.2536201
- Liu, X., Zhen, S., Sun, H., Zhao, H.: A Novel model-based robust control for position tracking of permanent magnet linear motor. IEEE Trans. Ind. Electron. 67(9), 7767-7777 (2020) https://doi.org/10.1109/tie.2019.2945281
- Baratam, A., Karlapudy, A.M., Munagala, S.: Implementation of thrust ripple reduction for a permanent magnet linear synchronous motor using an adaptive feed forward controller. J. Power Electron. 14(4), 687-694 (2014) https://doi.org/10.6113/JPE.2014.14.4.687
- Ting, C., Chang, Y., Chen, Y.: Backstepping direct thrust force control for sensorless PMLSM drive. IET Electr. Power Appl. 13(3), 322-331 (2019) https://doi.org/10.1049/iet-epa.2018.5269
- Bang, D., Hwang, S.: Wide Air-gap control for multi-module permanent magnet linear synchronous motors without magnetic levitation windings. J. Power Electron. 16(5), 1773-1780 (2016) https://doi.org/10.6113/JPE.2016.16.5.1773
- Paul, S., Chang, J., Rajan, A., Mukhopadhyay, S.: Design of linear magnetic position sensor used in permanent magnet linear machine with consideration of manufacturing tolerances. IEEE Sens. J. 19(13), 5239-5248 (2019) https://doi.org/10.1109/jsen.2019.2903292
- Luu, P.T., Lee, J.-Y., Kim, J.-W., Chung, S.-U., Kwon, S.-M.: Magnetic sensor design for a permanent magnet linear motor considering edge-effect. IEEE Trans. Ind. Electron. 67(7), 5768-5777 (2020) https://doi.org/10.1109/tie.2019.2931518
- Kim, J., Choi, S., Cho, K., Nam, K.: Position estimation using linear hall sensors for permanent magnet linear motor systems. IEEE Trans. Ind. Electron. 63(12), 7644-7652 (2016) https://doi.org/10.1109/TIE.2016.2591899
- Li, H., Zhang, X., Xu, C., Hong, J.: Sensorless control of IPMSM using moving-average-filter based PLL on HF pulsating signal injection method. IEEE Trans. Energy Convers. 35(1), 43-52 (2020) https://doi.org/10.1109/tec.2019.2946888
- Zhang, Y., Yin, Z., Liu, J., Zhang, R., Sun, X.: IPMSM sensorless control using high-frequency voltage injection method with random switching frequency for audible noise improvement. IEEE Trans. Ind. Electron. 67(7), 6019-6030 (2020) https://doi.org/10.1109/tie.2019.2937042
- Zhang, G., Wang, G., Wang, H., Xiao, D., Li, L., Xu, D.: Pseudorandom-frequency sinusoidal injection based sensorless IPMSM drives with tolerance for system delays. IEEE Trans. Power Electron. 34(4), 3623-3632 (2019) https://doi.org/10.1109/tpel.2018.2865802
- Yoon, S., Kim, J.: Sensorless control of a PMSM at low speeds using high frequency voltage injection. J. Power Electron. 5(1), 11-19 (2005)
- Scicluna, K., Staines, C.S., Raute, R.: Sensorless low/zero speed estimation for permanent magnet synchronous machine using a search-based real-time commissioning method. IEEE Trans. Ind. Electron. 67(7), 6010-6018 (2020) https://doi.org/10.1109/tie.2020.2965483
- Han, B., Shi, Y., Song, X., Hong, K., Mao, K.: Initial rotor position detection method of spmsm based on new high frequency voltage injection method. IEEE Trans. Power Electron. 34(4), 3553-3562 (2019) https://doi.org/10.1109/tpel.2018.2850318
- Wang, G., Kuang, J., Zhao, N., Zhang, G., Xu, D.: Rotor position estimation of PMSM in low-speed region and standstill using zero-voltage vector injection. IEEE Trans. Power Electron. 33(9), 7948-7958 (2018) https://doi.org/10.1109/tpel.2017.2767294
- Lin, T.C., Zhu, Z.Q.: Sensorless operation capability of surface-mounted permanent-magnet machine based on high-frequency signal injection methods. IEEE Trans. Ind. Appl. 51(3), 2161-2171 (2015) https://doi.org/10.1109/TIA.2014.2382762