DOI QR코드

DOI QR Code

Robust model predictive control for three-level voltage source inverters

  • Hong, Jianfeng (School of Electric Engineering and Automation, Hefei University of Technology) ;
  • Zhang, Xing (School of Electric Engineering and Automation, Hefei University of Technology) ;
  • Cao, Renxian (School of Electric Engineering and Automation, Hefei University of Technology)
  • Received : 2020.10.21
  • Accepted : 2021.02.19
  • Published : 2021.05.20

Abstract

To solve the problem of parameter mismatch in model predictive control (MPC), this paper presents a robust model predictive control method based on a fixed window optimization (FWO) algorithm for a three-level voltage source inverter that only needs to sample the current value. When compared with the traditional observer-based model predictive control (such as the Luenberger observer, sliding mode observer (SMO) and Kalman filter (KMF)), the proposed method does not require an observer with a complicated design, and its algorithm is simple and easy to understand. Meanwhile, high current sampling accuracy is not needed in the proposed method. However, it is necessary in some types of model-free predictive control. In addition, low switching frequency operation and delay compensation are also considered in this paper. In general, the proposed method is simple to implement and does not have high requirements in terms of the accuracy of its current sensor. Experimental results show that the proposed method can accurately estimate parameter values and improve the parameter robustness of MPC.

Keywords

Acknowledgement

This research is supported by the National Natural Science Foundation of China (51677049).

References

  1. Rodriguez, J., Kazmierkowski, M.P., Espinoza, J.R.: State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inf. 9(2), 1003-1016 (2013) https://doi.org/10.1109/TII.2012.2221469
  2. Guo, X., Xiao, M., Gao, Y.: Fix-frequency robust power model predictive control method for three-phase PWM rectifiers under unbalanced grid conditions. J. Power Electron. 20, 1283-1294 (2020) https://doi.org/10.1007/s43236-020-00118-3
  3. Kouro, S., Cortes, P., Vargas, R., Ammann, U., Rodriguez, J.: Model predictive control-a simple and powerful method to control power converters. IEEE Trans. Ind. Electron. 56(6), 1826-1838 (2009) https://doi.org/10.1109/TIE.2008.2008349
  4. Xia, C., Wang, M., Song, Z., Liu, T.: Robust model predictive current control of three-phase voltage source PWM rectifier with online disturbance observation. IEEE Trans. Ind. Inf. 8(3), 459-471 (2012) https://doi.org/10.1109/TII.2012.2187912
  5. Yang, J., Zheng, W.X., Li, S., Wu, B., Cheng, M.: Design of a systems via a disturbance observer. IEEE Trans. Ind. Electron. 62(9), 5807-5816 (2015) https://doi.org/10.1109/TIE.2015.2450736
  6. Li, H., Liu, S.: Speed control for PMSM servo system using predictive functional control and extended state observer. IEEE Trans. Ind. Electron. 59(2), 1171-1183 (2012) https://doi.org/10.1109/TIE.2011.2162217
  7. Xu, Y.P., Hou, Y., Li, Z.: Robust predictive speed control for SPMSM drives based on extended state observers. J. Power Electron. 19(2), 497-508 (2019) https://doi.org/10.6113/JPE.2019.19.2.497
  8. Fan, S., Tong, C.: Model predictive current control method for PMSM drives based on an improved prediction model. J. Power Electron. 20, 1456-1466 (2020) https://doi.org/10.1007/s43236-020-00125-4
  9. Jiang, Y., Xu, W., Mu, C., Liu, Y.: Improved deadbeat predictive current control combined sliding mode strategy for PMSM drive system. IEEE Trans. Veh. Technol. 67(1), 251-263 (2018) https://doi.org/10.1109/tvt.2017.2752778
  10. Kamesh, R., Rani, K.Y.: Novel formulation of adaptive MPC as EKF using ANN model: multiproduct semibatch polymerization reactor case study. IEEE Trans. Neural Network Learn. Syst. 28(12), 3061-3073 (2017) https://doi.org/10.1109/TNNLS.2016.2614878
  11. Abdelrahem, M., Hackl, C., Zhang, Z., Kennel, R.: Robust predictive control for direct-driven surface-mounted permanent-magnet synchronous generators without mechanical sensors. IEEE Trans. Energy Convers. 33(1), 179-189 (2018) https://doi.org/10.1109/tec.2017.2744980
  12. Zhang, X., Cheng, Y.: Robust model predictive control for PMSM drives based on current prediction error. In: 2019 IEEE international symposium on predictive control of electrical drives and power electronics (PRECEDE), Quanzhou, China, 2019, pp. 1-5. https://doi.org/10.1109/PRECEDE.2019.8753302
  13. Shen, K., Zhang, J.: Modeling error compensation in FCS-MPC of a three-phase inverter. In: 2012 IEEE international conference on power electronics, drives and energy systems (PEDES), Bengaluru, India, 2012, pp. 1-6. https://doi.org/10.1109/PEDES.2012.6484341
  14. Mohsen, S., Davood, A.K., Alireza, A., Jose, R.: Robustness improvement of predictive current control using prediction error correction for permanent magnet synchronous machines. IEEE Trans. Ind. Electron. 63(6), 3458-3466 (2016) https://doi.org/10.1109/TIE.2016.2521734
  15. Kazmierkowski, M.P., Espinoza, J.R.: State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inf. 9(2), 1003-1016 (2013) https://doi.org/10.1109/TII.2012.2221469
  16. Mohamed, Y.A.-R.I.: Design and implementation of a robust current control scheme for a PMSM vector drive with s simple adaptive disturbance observer. IEEE Trans. Ind. Electron. 54(4), 1981-1988 (2007) https://doi.org/10.1109/TIE.2007.895074
  17. Mohamed, Y.A.-R.I., El-Saadany, E.F.: A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive system. IEEE Trans. Energy Convers. 23(1), 92-100 (2008) https://doi.org/10.1109/TEC.2007.914352
  18. Kim, K.H.: Model reference adaptive control-based adaptive current control scheme of a PM synchronous motor with an improved servo performance. IET Electr. Power Appl. 3(1), 8-18 (2009) https://doi.org/10.1049/iet-epa:20080030
  19. Lin, C.K., Liu, T.H., Yu, J.T., Fu, L.C., Hsiao, C.F.: Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique. IEEE Trans. Ind. Electron. 61(2), 667-681 (2014) https://doi.org/10.1109/TIE.2013.2253065
  20. Lin, C.K., Yu, J.T., Lai, Y.S., Yu, H.C.: Improved model-free predictive current control for synchronous reluctance motor drives. IEEE Trans. Ind. Electron. 63(6), 3942-3953 (2016) https://doi.org/10.1109/TIE.2016.2527629
  21. Meditch, J.S., Hostetter, G.H.: Observers for systems with unknown and inaccessible inputs. Int. J. Contr. 19(3), 473-480 (1974) https://doi.org/10.1080/00207177408932644
  22. Zhang, X., Wang, Y., Yu, C., Guo, L., Cao, R.: Hysteresis model predictive control for high-power grid-connected inverters with output LCL-filter. IEEE Trans. Ind. Electron. 63(1), 246-256 (2016) https://doi.org/10.1109/TIE.2015.2477060
  23. Zhang, X.G., Zhang, L., Zhang, Y.C.: Model predictive current control for PMSM drives with parameter robustness improvement. IEEE Trans. Power Electron. 34(2), 1645-1657 (2019) https://doi.org/10.1109/tpel.2018.2835835
  24. Matsui, N., Makino, T., Satoh, H.: Auto-compensation of torque ripple of direct drive motor by torque observer. IEEE Trans. Ind. Applicat. 29, 187-194 (1993) https://doi.org/10.1109/28.195906