DOI QR코드

DOI QR Code

Performance improvement of cascaded H-bridge multilevel inverters with modified modulation scheme

  • Lee, Eui-Jae (Department of Electrical and Computer Engineering, Ajou University) ;
  • Lee, Kyo-Beum (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2020.08.31
  • Accepted : 2020.12.08
  • Published : 2021.03.20

Abstract

This study proposes a modified modulation scheme based on the phase-shifted pulse-width modulation (PS-PWM) method to improve the output performance and reduce the switching loss in cascaded H-bridge multilevel inverters. The PS-PWM method is one of the most popular modulation schemes. However, it generates significant switching loss, which can lead to the failure of power semiconductor switches. Various studies have proposed modulation schemes to reduce switching loss. The clamped discontinuous PWM (DPWM) method achieves the best switching loss reduction performance in comparison with other modulation schemes. However, the clamped DPWM method has low output characteristics, such as total harmonic distortion. The proposed modulation scheme achieves the same switching loss reduction and improved output performance by modifying the dwell time order. The proposed evenly clamped DPWM method was compared with the conventional clamped DPWM method through simulations and experiments.

Keywords

Acknowledgement

This study was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 2020691010060), and Korea Electric Power Research Institute(KEPRI) grant funded by the KEPCO(R19DA09, Development of power control technologies on DER to increase DER hosting capacity in distribution system).

References

  1. Lee, K.-B.: Advanced Power Electronics. Munundang, Seoul (2019)
  2. Rodriguez, J., Bernet, S., Wu, B., Pontt, J.O., Kouro, S.: Multilevel voltage-source-converter topologies for industrial medium-voltage drives. IEEE Trans. Ind. Electron. 54(6), 2930-2945 (2007) https://doi.org/10.1109/TIE.2007.907044
  3. Lee, J.-H., Lee, J.-S., Lee, K.-B.: A fault diagnosis method in cascaded h-bridge multilevel inverter using output current analysis. J. Electr. Eng. Technol. 12(60), 2278-2288 (2017)
  4. Lee, J.-S., Sim, H.-W., Kim, J., Lee, K.-B.: Combination analysis and switching method of a cascaded H-bridge multilevel inverter based on transformers with the different turns-ratio for increasing the voltage level. IEEE Trans. Ind. Electron. 65(6), 4454-4465 (2018) https://doi.org/10.1109/tie.2017.2772139
  5. Malinowski, M., Gopakumar, K., Rodriguez, J., Perez, M.A.: A survey on cascaded multilevel inverters. IEEE Trans. Ind. Electron. 57(7), 2197-2206 (2010) https://doi.org/10.1109/TIE.2009.2030767
  6. Kim, S.-M., Lee, J.-S., Lee, K.-B.: A modified level-shifted PWM strategy for fault tolerant cascaded multilevel inverters with improved power distribution. IEEE Trans. Ind. Electron. 63(11), 7264-7274 (2016) https://doi.org/10.1109/TIE.2016.2547917
  7. Naderi, R., Rahmati, A.: Phase-shifted carrier PWM technique for general cascaded inverters. IEEE Trans. Power Electron. 23(3), 1257-1269 (2008) https://doi.org/10.1109/TPEL.2008.921186
  8. Tsunoda, A., Hinago, Y., Koizumi, H.: Level- and phase-shifted PWM for seven-level switched-capacitor inverter using series/parallel conversion. IEEE Trans. Ind. Electron. 61(8), 4011-4021 (2014) https://doi.org/10.1109/TIE.2013.2286559
  9. Sochor, P., Akagi, H.: Theoretical and experimental comparison between phase-shifted PWM and level-shifted PWM in a modular multilevel SDBC inverter for utility-scale photovoltaic applications. IEEE Trans. Ind. Appl. 53(5), 4695-4707 (2017) https://doi.org/10.1109/TIA.2017.2704539
  10. Lee, E.-J., Kim, S.-M., Lee, K.-B.: Modified phase-shifted PWM scheme for reliability improvement in cascaded H-bridge multilevel inverters. IEEE Access. 35(4), 78130-78139 (2020)
  11. Ko, Y., Andresen, M., Buticchi, G., Liserre, M.: Power routing for cascaded H-bridge converters. IEEE Trans. Power Electron. 32(12), 9435-9446 (2017) https://doi.org/10.1109/TPEL.2017.2658182
  12. Ko, Y., Raveendran, V., Andresen, M., Liserre, M.: Thermally compensated discontinuous modulation for MVAC/LVDC building blocks of modular smart transformers. IEEE Trans. Power Electron. 35(1), 220-231 (2020) https://doi.org/10.1109/tpel.2019.2908853
  13. Smet, V., Forest, F., Huselstein, J.-J., Richardeau, F., Khatir, Z., Lefebvre, S., Berkani, M.: Ageing and failure modes of IGBT modules in high-temperature power cycling. IEEE Trans. Ind. Electron. 58(10), 4931-4941 (2011) https://doi.org/10.1109/TIE.2011.2114313
  14. Monopoli, V.G., Marquez, A., Leon, J.I., Ko, Y., Buticchi, G., Liserre, M.: Improved harmonic performance of cascaded H-bridge converters with thermal control. IEEE Trans. Ind. Electron. 66(7), 4982-4991 (2019) https://doi.org/10.1109/tie.2018.2868304
  15. Lee, J.-S., Lee, K.-B., and Ko, Y.: An improved phase-shifted PWM method for a three-phase cascaded H-bridge multi-level inverter. In: Proceeding of IEEE Energy Convers. Congr. Expo, pp 2100-2105 (2017)
  16. Ko, Y., Andresen, M., Buticchi, G., Liserre, M.: Discontinuous-modulation-based active thermal control of power electronic modules in wind farms. IEEE Trans. Power Electron. 34(1), 301-310 (2019) https://doi.org/10.1109/TPEL.2018.2819423
  17. Monopoli, V.G., Ko, Y., Buticchi, G., Liserre, M.: Performance comparison of variable-angle phase-shifting carrier PWM techniques. IEEE Trans. Ind. Electron. 65(7), 5272-5281 (2018) https://doi.org/10.1109/tie.2017.2777419
  18. Ko, Y., Andresen, M., Buticchi, G., Liserre, M.: Thermally compensated discontinuous modulation strategy for cascaded H-bridge converter. IEEE Trans. Power Electron. 33(3), 2704-2713 (2018) https://doi.org/10.1109/TPEL.2017.2694455
  19. Lee, K.-B., Lee, J.-S.: Reliability Improvement Technology for Power Converters. Springer, Singapore (2017)
  20. Jo, S.-R., Kim, S.-M., Cho, S., Lee, K.-B.: Development of a hardware simulator for reliable design of modular multilevel converter based on junction-temperature of IGBT modules. Electronics 8(10), 1127 (2019) https://doi.org/10.3390/electronics8101127