DOI QR코드

DOI QR Code

Soft switching circuit of high-frequency active neutral point clamped inverter based on SiC/Si hybrid device

  • Wang, Jianing (College of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Xun, Yuanwu (College of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Liu, Xiaohui (College of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Yu, Shaolin (College of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Jiang, Nan (Guangdong Institute of Semiconductor Industrial Technology, Guangdong Academy of Sciences)
  • 투고 : 2020.07.20
  • 심사 : 2020.09.29
  • 발행 : 2021.01.20

초록

Although the silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) is superior to the conventional silicon (Si) insulated gate bipolar transistor in terms of switching performance, the switching losses of SiC devices increase rapidly by hard switching when the switching frequency (fsw) increase to hundreds of kilohertz (kHz). This paper proposes an auxiliary zero-voltage-transition circuit to realize zero-voltage-switching for all of the high-frequency main switches of the active neutral point clamped (ANPC) inverter based on a SiC/Si hybrid device, and zero-current-switching for all of the auxiliary switches. Through soft switching, the switching losses and anti-parallel diode reverse recovery losses of high-frequency SiC MOSFET switches can be further reduced. First, the circuit topology and the operation principle of the soft switching are detailed followed by the design procedure of the parameters. Then, the efficiencies of hard switching and soft switching ANPC inverters are compared with fsw changing from 10 to 200 kHz. To further improve the efficiency of the soft-switching inverter, two improved methods are proposed. The two proposed methods are auxiliary switches paralleling the external diode and utilizing synchronous rectification technology. Finally, a 1 kW, up to 200 kHz frequency ANPC inverter has been built to validate the above analysis.

키워드

과제정보

This work was supported by grants from the Power Electronics Science and Education Development Program of Delta Group, Institute of Energy, Hefei Comprehensive National Science Center under Grant No. 19KZS207, Key-Area Research and Development Program of Guangdong Province (No. 2019B010128002), and 111 Project.

참고문헌

  1. Guan, Q., et al.: An extremely high efficient three-level active neutral-point-clamped converter comprising SiC and Si hybrid power stages. IEEE Trans. Power Electron. 33(10), 8341-8352 (2018) https://doi.org/10.1109/tpel.2017.2784821
  2. Deng, Y., Li, J., Shin, K.H., Viitanen, T., Saeedifard, M., Harley, R.G.: Improved modulation scheme for loss balancing of three-level active NPC converters. IEEE Trans. Power Electron. 32(4), 2521-2532 (2017) https://doi.org/10.1109/TPEL.2016.2573823
  3. Barater, D., Concari, C., Buticchi, G., Gurpinar, E., De, D., Castellazzi, A.: Performance evaluation of a three-level ANPC photovoltaic grid-connected inverter with 650-V SiC devices and optimized PWM. IEEE Trans. Ind. Appl. 52(3), 2475-2485 (2016) https://doi.org/10.1109/TIA.2016.2514344
  4. Liu, Z., Li, B., Lee, F.C., Li, Q.: High-efficiency high-density critical mode rectifier/inverter for wbg-device-based on-board charger. IEEE Trans. Ind. Electron. 64(11), 9114-9123 (2017) https://doi.org/10.1109/TIE.2017.2716873
  5. Hazra, S., et al.: High switching performance of 1700-V, 50-A SiC power MOSFET over Si IGBT/BiMOSFET for advanced power conversion applications. IEEE Trans. Power Electron. 31(7), 4742-4754 (2016) https://doi.org/10.1109/TPEL.2015.2432012
  6. Wondrak, W., Held, R., Niemann, E., Schmid, U.: SiC devices for advanced power and high-temperature applications. IEEE Trans. Ind. Electron. 48(2), 307-308 (2001)
  7. Safari, S., Castellazzi, A., Wheeler, P.: Experimental and analytical performance evaluation of SiC power devices in the matrix converter. IEEE Trans. Power Electron. 29(5), 2584-2596 (2014) https://doi.org/10.1109/TPEL.2013.2289746
  8. He, N., Chen, M., Wu, J., Zhu, N., Xu, D.: 20-kW zero-voltage-switching SiC-mosfet grid inverter with 300 kHz switching frequency. IEEE Trans. Power Electron. 34(6), 5175-5190 (2019) https://doi.org/10.1109/tpel.2018.2866824
  9. He, N., Zhu, Y., Zhao, A., Xu, D.: Zero-voltage-switching sinusoidal pulse-width modulation method for three-phase four-wire inverter. IEEE Trans. Power Electron. 34(8), 7192-7205 (2019) https://doi.org/10.1109/tpel.2018.2878255
  10. Xia, Y., Ayyanar, R.: Naturally adaptive, low-loss zero-voltage-transition circuit for high-frequency full-bridge inverters with hybrid PWM. IEEE Trans. Power Electron. 33(6), 4916-4933 (2018) https://doi.org/10.1109/tpel.2017.2734638
  11. Hua, G., Lee, F.C.: Soft-switching techniques in PWM converters. IEEE Trans. Ind. Electron. 42(6), 595-603 (1995) https://doi.org/10.1109/41.475500
  12. Ching, T.W., Chan, K.U.: Review of soft-switching techniques for high-frequency switched-mode power converters. IEEE Veh Power Propul Conf Harbin 2008, 1-6 (2008)
  13. Zhang, H., Yao, J., Kou, B.: Initial resonant current control for extra-LC auxiliary resonant snubber soft-switching inverter without filter inductor current sensor. IEEE Access 7, 149237-149244 (2019) https://doi.org/10.1109/access.2019.2946845
  14. Zhang, Q., Hu, H., Zhang, D., Fang, X., Shen, Z.J., Bartarseh, I.: A controlled-type ZVS technique without auxiliary components for the low power DC/AC inverter. IEEE Trans. Power Electron. 28(7), 3287-3296 (2013) https://doi.org/10.1109/TPEL.2012.2225075
  15. Charalambous, A., Yuan, X., McNeill, N.: High-frequency EMI attenuation at source with the auxiliary commutated pole inverter. IEEE Trans. Power Electron. 33(7), 5660-5676 (2018) https://doi.org/10.1109/tpel.2017.2743041
  16. Divan, D.M.: The resonant DC link converter-a new concept in static power conversion. IEEE Trans. Ind. Appl. 25(2), 317-325 (1989) https://doi.org/10.1109/28.25548
  17. Chu, E., Li, S., Xie, H., Qiu, J., Zhang, H.: RDCL three-phase inverter and load adaptive commutation control. IET Power Electron. 12(3), 505-514 (2019) https://doi.org/10.1049/iet-pel.2018.5147
  18. Xiao, H.F., Zhang, L., Li, Y.: A zero-voltage-transition HERIC-type transformerless photovoltaic grid-connected inverter. IEEE Trans. Ind. Electron. 64(2), 1222-1232 (2017) https://doi.org/10.1109/TIE.2016.2611574
  19. Yuan, X.M., Orglmeister, G., Barbi, I.: ARCPI resonant snubber for the neutral-point-clamped inverter. IEEE Trans. Ind. Appl. 36(2), 586-595 (2000) https://doi.org/10.1109/28.833777
  20. Li, J., Liu, J., Boroyevich, D., Mattavelli, P., Xue, Y.: Three-level active neutral-point-clamped zero-current-transition converter for sustainable energy systems. IEEE Trans. Power Electron. 26(12), 3680-3693 (2011) https://doi.org/10.1109/TPEL.2011.2161890
  21. Yu, Z., Xia, Y., Ayyanar, R.: A simple ZVT auxiliary circuit for totem-pole bridgeless PFC rectifier. IEEE Trans. Ind. Appl. 55(3), 2868-2878 (2019) https://doi.org/10.1109/tia.2019.2893268
  22. Gurunathan, R., Bhat, A.K.S.: Zero-voltage switching DC Link Single-Phase Pulsewidth-Modulated Voltage Source Inverter. IEEE Trans. Power Electron. 22(5), 1610-1618 (2007) https://doi.org/10.1109/TPEL.2007.904169
  23. Feng, Z., Zhang, X., Yu, S., Wang, J.: Loss analysis and measurement of ANPC inverter based on SiC & Si hybrid module. In: 2018 IEEE International Power Electron. and Appl. Conference and Exposition (PEAC), Shenzhen, 2018, pp. 1-6
  24. Wang, J., Liu, X., Xun, Y., Yu, S.: Common mode noise reduction of 3-level active neutral point clamped inverters with uncertain parasitic capacitance of photovoltaic panels. IEEE Trans. Power Electron. 35(7), 6974-6988 (2020) https://doi.org/10.1109/tpel.2019.2956771
  25. Wang, T. C. Y., Zhihong Y., Sinha, G., Yuan, X.: Output filter design for a grid-interconnected three-phase inverter. In: IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03., Acapulco, Mexico, 2003, vol. 2, pp. 779-784
  26. Yin, S., Tseng, K. J., Tong, C. F., Simanjorang, R., Gajanayake, C. J., Gupta, A. K.: A 99% efficiency SiC three-phase inverter using synchronous rectification. In: 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 2016, pp. 2942-2949
  27. Yin, S., Liu, Y., Liu, Y., Tseng, K.J., Pou, J., Simanjorang, R.: Comparison of SiC voltage source inverters using synchronous rectification and freewheeling diode. IEEE Trans. Ind. Electron 65(2), 1051-1061 (2018) https://doi.org/10.1109/tie.2017.2733483