과제정보
This work was partially supported by the National Key Research and Development Project (Grant Nos. 2018YFB2200500, 2018YFB2202800, received by Genquan Han), and also by the National Natural Science Foundation of China (Grant Nos. 62025402, 62090033, 91964202, 92064003, 61874081, 61851406, 62004149 and 62004145, received by Genquan Han; and 11365007, received by Yagong Nan).
참고문헌
- Kojima, K., Okumura, H.: Development of 4H-SiC Schottky np diode with high blocking voltage and ultralow on-resistance. Appl. Phys. Lett. 116(1), 012103 (2020) https://doi.org/10.1063/1.5130732
- Chen, X.B., Wang, X., Sin, J.K.O.: A novel high-voltage sustaining structure with buried oppositely doped regions. IEEE Trans. Electron Devices. 47(6), 1280-1285 (2000) https://doi.org/10.1109/16.842974
- Zeghdar, K., Dehimi, L., Pezzimenti, F., Rao, S., Corte, F.G.D.: Simulation and analysis of the current-voltage-temperature characteristics of Al/Ti/4H-SiC Schottky barrier diodes. Jpn. J. Appl. Phys. 58(1), 014002 (2019) https://doi.org/10.7567/1347-4065/aaf3ab
- Spry, D., Neudeck, P.G., Chen, L.Y., Lukco, D., Chang, C.W., Beheim, G.M.: Prolonged 500 ℃ demonstration of 4H-SiC JFET ICs with two-level interconnect. IEEE Electron Device Lett. 37(5), 625-628 (2016) https://doi.org/10.1109/LED.2016.2544700
- Nishio, J., Ota, C., Hatakeyama, T., Shinohe, T., Kojima, K., Nishizawa, S.I., Ohashi, H.: Ultralow-loss SiC floating junction schottky barrier diodes (Super-SBDs). IEEE Trans. Electron Devices. 55(8), 1954-1959 (2008) https://doi.org/10.1109/TED.2008.926666
- Woerle, J., Johnson, B.C., Bongiorno, C., Yamasue, K., Ferro, G., Dutta, D., Jung, T.A., Sigg, H., Cho, Y., Grossner, U., Camarda, M.: Two-dimensional defect mapping of the SiO2/4H-SiC interface. Phys. Rev. Mater. 3(8), 084602 (2019) https://doi.org/10.1103/physrevmaterials.3.084602
- Zhang, Y.M., Zhang, Y.M., Alexandrov, P., Zhao, J.H.: Fabrication of 4H-SiC Merged PN-Schottky diodes. Chin. J. Semicond. 22(3), 265-270 (2001) https://doi.org/10.3321/j.issn:0253-4177.2001.03.004
- Latreche, A., Ouennoughi, Z., Sellai, A., Weiss, R., Ryssel, H.: Electrical characteristics of Mo/4H-SiC Schottky diodes having ion-implanted guard rings: temperature and implant-dose dependence. Semicond. Sci. Techno. ,26(8), 085003 (2011) https://doi.org/10.1088/0268-1242/26/8/085003
- He, Q.Y., Luo, X.R., Liao, T., Wei, J., Deng, G.Q., Sun, T., Fang, J., Yang, F.: 4H-SiC superjunction trench MOSFET with reduced saturation current. Superlattices Microstruct. 125, 58-65 (2019) https://doi.org/10.1016/j.spmi.2018.10.016
- Sun, Q.W., Zhang, Y.M., Zhang, Y.M., Lu, H.L., Chen, F.P., Zheng, Q.L.: Analytical model for reverse characteristics of 4H-SiC merged PN Schottky (MPS) diodes. Chin. Phys. B. 18(12), 5475 (2009)
- Wu, L.J., Lei, B., Yang, H., Song, Y., Zhang, Y.Y.: A 4H-SiC junction barrier Schottky diode with segregated floating trench and super junction. Superlattices Microstruct. 123, 201-209 (2018) https://doi.org/10.1016/j.spmi.2018.07.030
- Do, K., Lee, B.S., Koo, Y.S.: Study on 4H-SiC GGNMOS based ESD protection circuit with low trigger voltage using gate-body floating technique for 70-V applications. IEEE Electron Device Lett. 40(2), 283-286 (2019) https://doi.org/10.1109/led.2018.2885846
- Wang, C.L., Sun, J.: An oxide filled extended trench gate superjunction MOSFET structure. Chin. Phys. B. 18(3), 1232-1235 (2009)
- Orouji, A.A., Jozi, M., Fathipour, M.: High-voltage and low specific on-resistance power UMOSFET using p and n type columns. Mater. Sci. Semicond. Process. 39, 711-720 (2015) https://doi.org/10.1016/j.mssp.2015.06.006
- Latreche, A.: Conduction mechanisms of the reverse leakage current of 4H-SiC Schottky barrier diodes. Semicond. Sci. Tech. 34(2), 025016 (2019) https://doi.org/10.1088/1361-6641/aaf8cb
- Ma, L., Gao, Y.: Semi-super junction SiGe high voltage fast and soft recovery switching diodes. Acta. Phys. Sin. 58(1), 530 (2009)
- Nan, Y.G., Zhang, Z.R., Zhou, Z.: Study on temperature properties of 4H-SiC doubled-floating junction Schottky barrier diodes. Microelectronics. 41, 146-149 (2011). ((in Chinese))
- Liang, S.W., Wang, J., Fang, F., Deng, L.F.: Simulation study of a 4H-SiC lateral BJT for monolithic power integration. J. Semicond. 39(12), 124004 (2018) https://doi.org/10.1088/1674-4926/39/12/124004
- Toumi, S., Ouennoughi, Z.: A vertical optimization method for a simultaneous extraction of the five parameters characterizing the barrier height in the Mo/4H-SiC Schottky contact. Indian J. Phys. 93(4), 1155 (2019) https://doi.org/10.1007/s12648-019-01393-y
- Li, K., Videt, A., Idir, N., Evans, P.L., Johnson, C.M.: Accurate Measurement of Dynamic on-State Resistances of GaN Devices Under Reverse and Forward Conduction in High Frequency Power Converter. IEEE Trans. Power Electron. 35(9), 9652 (2020) https://doi.org/10.1109/tpel.2019.2961604
- Cheng, J.C., Tsui, B.Y.: Effects of rapid thermal annealing on Ar inductively coupled plasma-treated n-Type 4H-SiC Schottky and Ohmic contacts. IEEE Trans. Electron Devices. 65(9), 3739-3745 (2018) https://doi.org/10.1109/TED.2018.2859272
- Cheng, J.C., Tsui, B.Y.: Reduction of specific contact resistance on n-type implanted 4H-SiC through argon inductively coupled plasma treatment and post-metal deposition annealing. IEEE Electron Device Lett. 38(12), 1700-1703 (2017) https://doi.org/10.1109/LED.2017.2760884
- Xiang, A., Xu, X., Zhang, L., Li, Z., Li, J., Dai, G.: Origin of temperature dependent conduction of current from n-4H-SiC into silicon dioxide films at high electric fields. Appl. Phys. Lett. 112(6), 062101 (2018) https://doi.org/10.1063/1.5006249
- Talesara, V., Xing, D., Fang, X.X., Fu, L.X., Shao, Y., Wang, J., Lu, W.: Dynamic switching of SiC power MOSFETs based on analytical subcircuit model. IEEE Trans. Power Electron.,35(9), 9682 (2020) https://doi.org/10.1109/tpel.2020.2972453
- Sakairi, H., Yanagi, T., Otake, H., Kuroda, N., Tanigawa, H.: Measurement methodology for accurate modeling of SiC MOSFET switching behavior over wide voltage and current ranges. IEEE Trans. Power Electron. 33(9), 7314-7325 (2018) https://doi.org/10.1109/tpel.2017.2764632
- Takuya, M., Junya, Y., Toshiharu, M., Masahiko, O., Hiromitsu, K., Satoshi, Y., Meralys, N., Stephen, E.S., Takayuki, I., Mutsuko, H.: Characterization of Schottky barrier diodes on heteroepitaxial diamond on 3C-SiC/Si substrates. IEEE Trans. Electron Devices. 67(1), 212-216 (2020) https://doi.org/10.1109/TED.2019.2952910
- Ponce, S., Li, W.B., Reichardt, S., Giustino, F.: First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials. Rep. Prog. Phys. 83(3), 036501 (2020) MathSciNet https://doi.org/10.1088/1361-6633/ab6a43
- Lingaparthi, R., Thieu, Q.T., Koshi, K., Wakimoto, D., Sasaki, K., Kuramata, A.: Surface states on (001) oriented β-Ga2O3 epilayers, their origin, and their effect on the electrical properties of Schottky barrier diodes. Appl. Phys. Lett. 116(9), 092101 (2020) https://doi.org/10.1063/1.5142246
- Kruchinin, S.Y., Krausz, F., Yakovlev, V.S.: Colloquium: strong-field phenomena in periodic systems. Rev. Mod. Phys. 90(2), 021002 (2018) MathSciNet https://doi.org/10.1103/revmodphys.90.021002
- Pandey, A., Liu, X., Deng, Z., Shin, W.J., Laleyan, D.A., Mashooq, K., Reid, E.T., Kioupakis, E., Bhattacharya, P., Mi, Z.: Enhanced doping efficiency of ultrawide band gap semiconductors by metal-semiconductor junction assisted epitaxy. Phys. Rev. Mater. 3(5), 053401 (2019) https://doi.org/10.1103/physrevmaterials.3.053401
- Jaramillo, R., Youssef, A., Akey, A., Schoofs, F., Ramanathan, S., Buonassisi, T.: Using atom-probe tomography to understand ZnO:Al/SiO2/Si Schottky diodes. Phys. Rev. Appl. 6(3), 034016 (2016) https://doi.org/10.1103/PhysRevApplied.6.034016
- Zhang, J.Z., Wu, H.F., Zhang, Y.Q., Zhao, J.: Turn-off modes of silicon carbide MOSFETs for short-circuit fault protection. J. Power Electron. 21(4), 475-482 (2021) https://doi.org/10.1007/s43236-020-00181-w
- Thorsten, S., Sofie, V., Peter, S., Holger, V.W., Norbert, K., Marius, G.: Influence of oxygen deficiency on the rectifying behavior of transparent-semiconducting-Oxide-metal interfaces. Phys. Rev. Appl. 9(6), 064001 (2018) https://doi.org/10.1103/PhysRevApplied.9.064001
- Yin, S., Gu, Y.F., Tseng, K.J., Li, J.T., Dai, G., Zhou, K.: A physics-based compact Model of SiC junction barrier Schottky diode for circuit simulation. IEEE Trans. Electron Devices. 65(8), 2-9 (2018)
- Fan, R., Yue, M., Karnik, R., Majumdar, A., Yang, P.D.: Polarity switching and transient responses in single nanotube nanofluidic transistors. Phys. Rev. Lett. 95(8), 086607 (2005) https://doi.org/10.1103/PhysRevLett.95.086607
- Tongay, S., Lemaitre, M., Miao, X., Gila, B., Appleton, B.R., Hebard, A.F.: Rectification at graphene-semiconductor interfaces: zero-gap semiconductor-based diodes. Phys. Rev. X. 2(1), 011002 (2012)
- Emilio, S., Anna, M., Francesco, M., Leo, M.: Temperature dependent stability of polytypes and stacking faults in SiC: reconciling theory and experiments. Phys. Rev. Applied. ,12(2), 021002 (2019) https://doi.org/10.1103/PhysRevApplied.12.021002
- Ang, Y.S., Yang, H.Y., Ang, L.K.: Universal scaling laws in schottky heterostructures based on two-dimensional materials. Phys. Rev. Lett. 121(5), 056802 (2018) https://doi.org/10.1103/physrevlett.121.056802
- Baumeier, B., Kruge, P., Pollmann, J.: First-principles investigation of the atomic and electronic structure of the 4H-SiC (1102)-c(2×2) surface. Phys. Rev. B. 78(24), 245318 (2008) https://doi.org/10.1103/physrevb.78.245318
- Du, X., Du, X., Zhang, J., Li, G.X.: Numerical junction temperature calculation method for reliability evaluation of power semiconductors in power electronics converters. J. Power Electron. 21(1), 184-194 (2021) https://doi.org/10.1007/s43236-020-00154-z
- Chu, R.M.: GaN power switches on the rise: demonstrated benefits and unrealized potentials. Appl. Phys. Lett. 116, 090502 (2020) https://doi.org/10.1063/1.5133718
- Rhoderick, E.H., Williams, R.H.: Metal-semiconductor contacts. Oxford Science Publications, Oxford (1998)
- Kil, T.H., Kita, K.: Anomalous band alignment change of SiO2/4H-SiC (0001) and (000-1) MOS capacitors induced by NO-POA and its possible origin. Appl. Phys. Lett. 116(12), 122103 (2020) https://doi.org/10.1063/1.5135606
- Omar, S.U., Sudarshan, T.S., Rana, T.A., Song, H., Chandrashekhar, M.V.S.: Interface trap-induced nonideality in as-deposited Ni/4H-SiC Schottky barrier diodes. IEEE Trans. Electron Devices. 62(2), 615-619 (2015) https://doi.org/10.1109/TED.2014.2383386
- Ulbricht, R., Hendry, E., Shan, J., Heinz, T.F., Bonn, M.: Erratum: carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 89(2), 029901 (2017) https://doi.org/10.1103/RevModPhys.89.029901
- Nicholls, J., Dimitrijev, S., Tanner, P., Han, J.S.: Description and verification of the fundamental current mechanisms in silicon carbide Schottky Barrier diodes. Sci. Rep. 9(1), 3754 (2019) https://doi.org/10.1038/s41598-019-40287-1
- Cazorla, C., Boronat, J.: Simulation and understanding of atomic and molecular quantum crystals. Rev. Mod. Phys. 89(3), 035003 (2017) MathSciNet
- Fan, Z.Q., Jiang, X.W., Luo, J.W., Jiao, L.Y., Huang, R., Li, S.S., Wang, L.W.: In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides. Phys. Rev. B. 96(16), 165402 (2017) https://doi.org/10.1103/physrevb.96.165402