DOI QR코드

DOI QR Code

Exploration of switching characteristics of 4H-SiC floating junction Schottky barrier diodes with stronger blocking voltage capability

  • Nan, Yagong (School of Microelectronics, Xidian University) ;
  • Han, Genquan (School of Microelectronics, Xidian University)
  • Received : 2021.03.30
  • Accepted : 2021.06.28
  • Published : 2021.10.20

Abstract

To promote applications in the field of power electronic devices, the switching characteristics of 4H-SiC Schottky barrier diodes with a floating junction structure were investigated. The rectangular pattern structure was employed as p+-buried layers of the floating junction due to its process convenience. In addition, some low-doped p--type layers were implanted in the drift region to improve the forward delayed conduction and to speed up the reverse recovery process. Crucial factors, such as the environment temperature, the doping concentrations of the drift region, and the dimensions of floating junction structure, which can have influences on the transient process of a device under certain bias conditions, were studied in detail by numerical simulations. Some results were quantitatively achieved by theoretical analysis. It was found that when retaining a breakdown voltage value of 4.49 kV, a low specific on-resistance of 5.87 mΩ·cm2, and a powerful capacity to carry current, when compared to the steeper reverse recovery of the conventional Schottky barrier diode, fast and soft switching characteristics with a reverse recovery time of 1.187 ns, and a value of 2.94 for the recovery softness factor, were obtained. The obtained results show that the technologic amelioration of the structure of devices can be advantageous in terms of the transient performance of the floating junction Schottky barrier diode and applications.

Keywords

Acknowledgement

This work was partially supported by the National Key Research and Development Project (Grant Nos. 2018YFB2200500, 2018YFB2202800, received by Genquan Han), and also by the National Natural Science Foundation of China (Grant Nos. 62025402, 62090033, 91964202, 92064003, 61874081, 61851406, 62004149 and 62004145, received by Genquan Han; and 11365007, received by Yagong Nan).

References

  1. Kojima, K., Okumura, H.: Development of 4H-SiC Schottky np diode with high blocking voltage and ultralow on-resistance. Appl. Phys. Lett. 116(1), 012103 (2020) https://doi.org/10.1063/1.5130732
  2. Chen, X.B., Wang, X., Sin, J.K.O.: A novel high-voltage sustaining structure with buried oppositely doped regions. IEEE Trans. Electron Devices. 47(6), 1280-1285 (2000) https://doi.org/10.1109/16.842974
  3. Zeghdar, K., Dehimi, L., Pezzimenti, F., Rao, S., Corte, F.G.D.: Simulation and analysis of the current-voltage-temperature characteristics of Al/Ti/4H-SiC Schottky barrier diodes. Jpn. J. Appl. Phys. 58(1), 014002 (2019) https://doi.org/10.7567/1347-4065/aaf3ab
  4. Spry, D., Neudeck, P.G., Chen, L.Y., Lukco, D., Chang, C.W., Beheim, G.M.: Prolonged 500 ℃ demonstration of 4H-SiC JFET ICs with two-level interconnect. IEEE Electron Device Lett. 37(5), 625-628 (2016) https://doi.org/10.1109/LED.2016.2544700
  5. Nishio, J., Ota, C., Hatakeyama, T., Shinohe, T., Kojima, K., Nishizawa, S.I., Ohashi, H.: Ultralow-loss SiC floating junction schottky barrier diodes (Super-SBDs). IEEE Trans. Electron Devices. 55(8), 1954-1959 (2008) https://doi.org/10.1109/TED.2008.926666
  6. Woerle, J., Johnson, B.C., Bongiorno, C., Yamasue, K., Ferro, G., Dutta, D., Jung, T.A., Sigg, H., Cho, Y., Grossner, U., Camarda, M.: Two-dimensional defect mapping of the SiO2/4H-SiC interface. Phys. Rev. Mater. 3(8), 084602 (2019) https://doi.org/10.1103/physrevmaterials.3.084602
  7. Zhang, Y.M., Zhang, Y.M., Alexandrov, P., Zhao, J.H.: Fabrication of 4H-SiC Merged PN-Schottky diodes. Chin. J. Semicond. 22(3), 265-270 (2001) https://doi.org/10.3321/j.issn:0253-4177.2001.03.004
  8. Latreche, A., Ouennoughi, Z., Sellai, A., Weiss, R., Ryssel, H.: Electrical characteristics of Mo/4H-SiC Schottky diodes having ion-implanted guard rings: temperature and implant-dose dependence. Semicond. Sci. Techno. ,26(8), 085003 (2011) https://doi.org/10.1088/0268-1242/26/8/085003
  9. He, Q.Y., Luo, X.R., Liao, T., Wei, J., Deng, G.Q., Sun, T., Fang, J., Yang, F.: 4H-SiC superjunction trench MOSFET with reduced saturation current. Superlattices Microstruct. 125, 58-65 (2019) https://doi.org/10.1016/j.spmi.2018.10.016
  10. Sun, Q.W., Zhang, Y.M., Zhang, Y.M., Lu, H.L., Chen, F.P., Zheng, Q.L.: Analytical model for reverse characteristics of 4H-SiC merged PN Schottky (MPS) diodes. Chin. Phys. B. 18(12), 5475 (2009)
  11. Wu, L.J., Lei, B., Yang, H., Song, Y., Zhang, Y.Y.: A 4H-SiC junction barrier Schottky diode with segregated floating trench and super junction. Superlattices Microstruct. 123, 201-209 (2018) https://doi.org/10.1016/j.spmi.2018.07.030
  12. Do, K., Lee, B.S., Koo, Y.S.: Study on 4H-SiC GGNMOS based ESD protection circuit with low trigger voltage using gate-body floating technique for 70-V applications. IEEE Electron Device Lett. 40(2), 283-286 (2019) https://doi.org/10.1109/led.2018.2885846
  13. Wang, C.L., Sun, J.: An oxide filled extended trench gate superjunction MOSFET structure. Chin. Phys. B. 18(3), 1232-1235 (2009)
  14. Orouji, A.A., Jozi, M., Fathipour, M.: High-voltage and low specific on-resistance power UMOSFET using p and n type columns. Mater. Sci. Semicond. Process. 39, 711-720 (2015) https://doi.org/10.1016/j.mssp.2015.06.006
  15. Latreche, A.: Conduction mechanisms of the reverse leakage current of 4H-SiC Schottky barrier diodes. Semicond. Sci. Tech. 34(2), 025016 (2019) https://doi.org/10.1088/1361-6641/aaf8cb
  16. Ma, L., Gao, Y.: Semi-super junction SiGe high voltage fast and soft recovery switching diodes. Acta. Phys. Sin. 58(1), 530 (2009)
  17. Nan, Y.G., Zhang, Z.R., Zhou, Z.: Study on temperature properties of 4H-SiC doubled-floating junction Schottky barrier diodes. Microelectronics. 41, 146-149 (2011). ((in Chinese))
  18. Liang, S.W., Wang, J., Fang, F., Deng, L.F.: Simulation study of a 4H-SiC lateral BJT for monolithic power integration. J. Semicond. 39(12), 124004 (2018) https://doi.org/10.1088/1674-4926/39/12/124004
  19. Toumi, S., Ouennoughi, Z.: A vertical optimization method for a simultaneous extraction of the five parameters characterizing the barrier height in the Mo/4H-SiC Schottky contact. Indian J. Phys. 93(4), 1155 (2019) https://doi.org/10.1007/s12648-019-01393-y
  20. Li, K., Videt, A., Idir, N., Evans, P.L., Johnson, C.M.: Accurate Measurement of Dynamic on-State Resistances of GaN Devices Under Reverse and Forward Conduction in High Frequency Power Converter. IEEE Trans. Power Electron. 35(9), 9652 (2020) https://doi.org/10.1109/tpel.2019.2961604
  21. Cheng, J.C., Tsui, B.Y.: Effects of rapid thermal annealing on Ar inductively coupled plasma-treated n-Type 4H-SiC Schottky and Ohmic contacts. IEEE Trans. Electron Devices. 65(9), 3739-3745 (2018) https://doi.org/10.1109/TED.2018.2859272
  22. Cheng, J.C., Tsui, B.Y.: Reduction of specific contact resistance on n-type implanted 4H-SiC through argon inductively coupled plasma treatment and post-metal deposition annealing. IEEE Electron Device Lett. 38(12), 1700-1703 (2017) https://doi.org/10.1109/LED.2017.2760884
  23. Xiang, A., Xu, X., Zhang, L., Li, Z., Li, J., Dai, G.: Origin of temperature dependent conduction of current from n-4H-SiC into silicon dioxide films at high electric fields. Appl. Phys. Lett. 112(6), 062101 (2018) https://doi.org/10.1063/1.5006249
  24. Talesara, V., Xing, D., Fang, X.X., Fu, L.X., Shao, Y., Wang, J., Lu, W.: Dynamic switching of SiC power MOSFETs based on analytical subcircuit model. IEEE Trans. Power Electron.,35(9), 9682 (2020) https://doi.org/10.1109/tpel.2020.2972453
  25. Sakairi, H., Yanagi, T., Otake, H., Kuroda, N., Tanigawa, H.: Measurement methodology for accurate modeling of SiC MOSFET switching behavior over wide voltage and current ranges. IEEE Trans. Power Electron. 33(9), 7314-7325 (2018) https://doi.org/10.1109/tpel.2017.2764632
  26. Takuya, M., Junya, Y., Toshiharu, M., Masahiko, O., Hiromitsu, K., Satoshi, Y., Meralys, N., Stephen, E.S., Takayuki, I., Mutsuko, H.: Characterization of Schottky barrier diodes on heteroepitaxial diamond on 3C-SiC/Si substrates. IEEE Trans. Electron Devices. 67(1), 212-216 (2020) https://doi.org/10.1109/TED.2019.2952910
  27. Ponce, S., Li, W.B., Reichardt, S., Giustino, F.: First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials. Rep. Prog. Phys. 83(3), 036501 (2020) MathSciNet https://doi.org/10.1088/1361-6633/ab6a43
  28. Lingaparthi, R., Thieu, Q.T., Koshi, K., Wakimoto, D., Sasaki, K., Kuramata, A.: Surface states on (001) oriented β-Ga2O3 epilayers, their origin, and their effect on the electrical properties of Schottky barrier diodes. Appl. Phys. Lett. 116(9), 092101 (2020) https://doi.org/10.1063/1.5142246
  29. Kruchinin, S.Y., Krausz, F., Yakovlev, V.S.: Colloquium: strong-field phenomena in periodic systems. Rev. Mod. Phys. 90(2), 021002 (2018) MathSciNet https://doi.org/10.1103/revmodphys.90.021002
  30. Pandey, A., Liu, X., Deng, Z., Shin, W.J., Laleyan, D.A., Mashooq, K., Reid, E.T., Kioupakis, E., Bhattacharya, P., Mi, Z.: Enhanced doping efficiency of ultrawide band gap semiconductors by metal-semiconductor junction assisted epitaxy. Phys. Rev. Mater. 3(5), 053401 (2019) https://doi.org/10.1103/physrevmaterials.3.053401
  31. Jaramillo, R., Youssef, A., Akey, A., Schoofs, F., Ramanathan, S., Buonassisi, T.: Using atom-probe tomography to understand ZnO:Al/SiO2/Si Schottky diodes. Phys. Rev. Appl. 6(3), 034016 (2016) https://doi.org/10.1103/PhysRevApplied.6.034016
  32. Zhang, J.Z., Wu, H.F., Zhang, Y.Q., Zhao, J.: Turn-off modes of silicon carbide MOSFETs for short-circuit fault protection. J. Power Electron. 21(4), 475-482 (2021) https://doi.org/10.1007/s43236-020-00181-w
  33. Thorsten, S., Sofie, V., Peter, S., Holger, V.W., Norbert, K., Marius, G.: Influence of oxygen deficiency on the rectifying behavior of transparent-semiconducting-Oxide-metal interfaces. Phys. Rev. Appl. 9(6), 064001 (2018) https://doi.org/10.1103/PhysRevApplied.9.064001
  34. Yin, S., Gu, Y.F., Tseng, K.J., Li, J.T., Dai, G., Zhou, K.: A physics-based compact Model of SiC junction barrier Schottky diode for circuit simulation. IEEE Trans. Electron Devices. 65(8), 2-9 (2018)
  35. Fan, R., Yue, M., Karnik, R., Majumdar, A., Yang, P.D.: Polarity switching and transient responses in single nanotube nanofluidic transistors. Phys. Rev. Lett. 95(8), 086607 (2005) https://doi.org/10.1103/PhysRevLett.95.086607
  36. Tongay, S., Lemaitre, M., Miao, X., Gila, B., Appleton, B.R., Hebard, A.F.: Rectification at graphene-semiconductor interfaces: zero-gap semiconductor-based diodes. Phys. Rev. X. 2(1), 011002 (2012)
  37. Emilio, S., Anna, M., Francesco, M., Leo, M.: Temperature dependent stability of polytypes and stacking faults in SiC: reconciling theory and experiments. Phys. Rev. Applied. ,12(2), 021002 (2019) https://doi.org/10.1103/PhysRevApplied.12.021002
  38. Ang, Y.S., Yang, H.Y., Ang, L.K.: Universal scaling laws in schottky heterostructures based on two-dimensional materials. Phys. Rev. Lett. 121(5), 056802 (2018) https://doi.org/10.1103/physrevlett.121.056802
  39. Baumeier, B., Kruge, P., Pollmann, J.: First-principles investigation of the atomic and electronic structure of the 4H-SiC (1102)-c(2×2) surface. Phys. Rev. B. 78(24), 245318 (2008) https://doi.org/10.1103/physrevb.78.245318
  40. Du, X., Du, X., Zhang, J., Li, G.X.: Numerical junction temperature calculation method for reliability evaluation of power semiconductors in power electronics converters. J. Power Electron. 21(1), 184-194 (2021) https://doi.org/10.1007/s43236-020-00154-z
  41. Chu, R.M.: GaN power switches on the rise: demonstrated benefits and unrealized potentials. Appl. Phys. Lett. 116, 090502 (2020) https://doi.org/10.1063/1.5133718
  42. Rhoderick, E.H., Williams, R.H.: Metal-semiconductor contacts. Oxford Science Publications, Oxford (1998)
  43. Kil, T.H., Kita, K.: Anomalous band alignment change of SiO2/4H-SiC (0001) and (000-1) MOS capacitors induced by NO-POA and its possible origin. Appl. Phys. Lett. 116(12), 122103 (2020) https://doi.org/10.1063/1.5135606
  44. Omar, S.U., Sudarshan, T.S., Rana, T.A., Song, H., Chandrashekhar, M.V.S.: Interface trap-induced nonideality in as-deposited Ni/4H-SiC Schottky barrier diodes. IEEE Trans. Electron Devices. 62(2), 615-619 (2015) https://doi.org/10.1109/TED.2014.2383386
  45. Ulbricht, R., Hendry, E., Shan, J., Heinz, T.F., Bonn, M.: Erratum: carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 89(2), 029901 (2017) https://doi.org/10.1103/RevModPhys.89.029901
  46. Nicholls, J., Dimitrijev, S., Tanner, P., Han, J.S.: Description and verification of the fundamental current mechanisms in silicon carbide Schottky Barrier diodes. Sci. Rep. 9(1), 3754 (2019) https://doi.org/10.1038/s41598-019-40287-1
  47. Cazorla, C., Boronat, J.: Simulation and understanding of atomic and molecular quantum crystals. Rev. Mod. Phys. 89(3), 035003 (2017) MathSciNet
  48. Fan, Z.Q., Jiang, X.W., Luo, J.W., Jiao, L.Y., Huang, R., Li, S.S., Wang, L.W.: In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides. Phys. Rev. B. 96(16), 165402 (2017) https://doi.org/10.1103/physrevb.96.165402