DOI QR코드

DOI QR Code

Novel submodule voltage balancing topology for hybrid modular multilevel converters

  • Liu, Yiqi (College of Mechanical and Electrical Engineering, Northeast Forestry University) ;
  • Liu, Yanchao (College of Mechanical and Electrical Engineering, Northeast Forestry University) ;
  • Jin, Yonglin (College of Mechanical and Electrical Engineering, Northeast Forestry University) ;
  • Chen, Jianlong (College of Mechanical and Electrical Engineering, Northeast Forestry University)
  • Received : 2021.03.30
  • Accepted : 2021.07.15
  • Published : 2021.10.20

Abstract

A hybrid modular multilevel converter (HMMC) topology based on a bidirectional diode clamp circuit is proposed in this paper. The proposed topology ensures that the voltages at the ends of the capacitance between the two leads of each submodule in the same phase are clamped to be equal to each other through the diode clamp circuit. The balancing process through the diode clamp circuit is bidirectional, which is only achieved by the diode clamp circuit. This topology has two advantages when compared with the traditional voltage balance control method. First, the framework used for controlling the entire structure is simplified while the link controlling the voltage balance is eliminated. Second, the control schemes used for the voltage balance are simplified, and the number of the corresponding high-frequency voltage sensors is reduced. Hence, the complexity of the system control is decreased, and communication is realized more easily. When compared with other voltage balancing circuits, the proposed circuit achieves bidirectional equalization and reduces the usage of the inductors. Then, the hardware cost is reduced. Finally, the feasibility of the proposed converter is verified by simulation results given in MATLAB/Simulink.

Keywords

Acknowledgement

This research was supported by the National Natural Science Foundation of China (No. 51907022) and the Fundamental Research Funds for the Central Universities (No. 2572019BF10).

References

  1. Wang, J., Wang, P.: Power decoupling control for modular multilevel converter. IEEE Trans. Power Electron. 33(11), 9296-9309 (2018) https://doi.org/10.1109/tpel.2018.2799321
  2. Zhou, D., Qiu, H., Yang, S., Tang, Y.: Submodule voltage similarity-based open-circuit fault diagnosis for modular multilevel converters. IEEE Trans. Power Electron. 34(8), 8008-8016 (2019) https://doi.org/10.1109/tpel.2018.2883989
  3. Liu, Y.Q., Jin, Y.L., Chen, J.L., Liu, Y.C.: A fault-tolerant strategy of hybrid modular multilevel converter based on level adjusting method. Energy Rep. 6, 312-320 (2020)
  4. Qin, J., Saeedifard, M.: Reduced switching-frequency voltage-balancing strategies for modular multilevel HVDC converters. In: 2014 IEEE PES General Meeting Conference and Exposition, National Harbor, MD, USA, pp. 1-1 (2014)
  5. Fehr, H., Gensior, A., Muller, M.: Analysis and trajectory tracking control of a modular multilevel converter. IEEE Trans. Power Electron. 30(1), 398-407 (2015) https://doi.org/10.1109/TPEL.2014.2301560
  6. Qin, J., Saeedifard, M.: Reduced switching-frequency voltage balancing strategies for modular multilevel HVDC converters. IEEE Trans. Power Del. 28(4), 2403-2410 (2013) https://doi.org/10.1109/TPWRD.2013.2271615
  7. Ghazanfari, A., Mohamed, Y.-I.: A resilient framework for fault-tolerant operation of modular multilevel converters. IEEE Trans. Ind. Electron. 63(5), 2669-2678 (2016) https://doi.org/10.1109/TIE.2016.2516968
  8. Liu, X., Lv, J., Gao, C., Chen, Z., Chen, S.: A novel STATCOM based on diode-clamped modular multilevel converters. IEEE Trans. Power Electron. 32(8), 5964-5977 (2017) https://doi.org/10.1109/TPEL.2016.2616495
  9. Gao, C., Lv, J.: A new parallel-connected diode-clamped modular multilevel converter with voltage self-balancing. IEEE Trans. Power Deliv. 32(3), 1616-1625 (2017) https://doi.org/10.1109/TPWRD.2017.2670662
  10. Gao, C., Jiang, X., Li, Y., Chen, Z., Liu, J.: A DC-link voltage self-balance method for a diode-clamped modular multilevel converter with minimum number of voltage sensors. IEEE Trans. Power Electron. 28(5), 2125-2139 (2013) https://doi.org/10.1109/TPEL.2012.2212915
  11. Jin, Y., et al.: A novel submodule voltage balancing scheme for modular multilevel cascade converter-double-star chopper-cells (MMCC-DSCC) based STATCOM. IEEE Access 7, 83058-83073 (2019) https://doi.org/10.1109/access.2019.2924609
  12. Tang, G., Xu, Z., Zhou, Y.Z.: Impacts of three MMC-HVDC configurations on AC system stability under DC line faults. In: 2015 IEEE Power and Energy Society General Meeting, Denver, CO, USA, pp. 1-1 (2015)
  13. Song, Q., Yang, W., Zhao, B., Xu, S., Rao, H., Zhu, Z.: Energy storage requirement reduction using negative-voltage states of a full bridge modular multilevel converter. IEEE Trans. Power Electron. 34(6), 5243-5255 (2019) https://doi.org/10.1109/tpel.2018.2869464
  14. Liu, Y.Q., Chen, Q.C., Li, N.N., Xie, B., Wang, J.Z., Ji, Y.C.: On DC-side impedance frequency characteristics analysis and DC voltage ripple prediction under unbalance conditions for MMC-HVDC system based on Maximum Modulation Index. J Power Electron. 16(1), 319-328 (2016) https://doi.org/10.6113/JPE.2016.16.1.319
  15. Hu, P.F., He, Z.X., Yin, R., Guo, J., Guerrero, J.M., Teodorescu, R.: Analysis and optimization of hybrid modular multilevel converters under over-modulation conditions. Int. J. Electr. Power Energy Syst. 116 (1), 1-16 (2020)
  16. Hu, P., Teodorescu, R., Guerrero, J.M.: Negative-sequence second-order circulating current injection for hybrid MMC under over-modulation conditions. IEEE J. Emerg. Sel. Top. Power Electron. 8(3), 2508-2519 (2020) https://doi.org/10.1109/jestpe.2019.2908828
  17. Lin, L., Lin, Y., Xu, C., Chen, Y.: Comprehensive analysis of capacitor voltage fluctuation and capacitance design for submodules in hybrid modular multilevel converter with Boosted Modulation Index. IEEE J. Emerg. Sel. Top. Power Electron. 7(4), 2369-2383 (2019) https://doi.org/10.1109/jestpe.2018.2861469
  18. Xu, J., et al.: Dual harmonic injection for reducing the sub-module capacitor voltage ripples of hybrid MMC. IEEE J. Emerg. Sel. Top. Power Electron. 9(3), 3622-3633 (2021) https://doi.org/10.1109/JESTPE.2020.3027464
  19. Li, X., Kang, X., Yuan, Y., Zheng, M.: A new control strategy for capacitor voltage balance of hybrid modular multilevel converter. In: 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP), Xi'an, China, pp. 921-925 (2019)
  20. Lee, J., Jung, J., Sul, S.: Balancing of submodule capacitor voltage of hybrid modular multilevel converter under DC-bus voltage variation of HVDC system. IEEE Trans. Power Electron. 34(11), 10458-10470 (2019) https://doi.org/10.1109/tpel.2019.2896336
  21. Xu, J., Zhang, J., Li, J., Shi, L., Jia, X., Zhao, C.: Series-parallel HBSM and two-port FBSM based hybrid MMC with local capacitor voltage self-balancing capability. Int. J. Electr. Power Energy Syst. 103, 203-211 (2018) https://doi.org/10.1016/j.ijepes.2018.05.032
  22. Zhang, Y., Zhang, J., Xu, Z., Deng F., Zhao, J.: Hybrid modular multilevel converter with self-balancing structure. In: 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, pp. 1828-1834 (2020)
  23. McGrath, B.P., Holmes, D.G.: Natural capacitor voltage balancing for a flying capacitor converter induction motor drive. IEEE Trans. Power Electron. 24(6), 1554-1561 (2009) https://doi.org/10.1109/TPEL.2009.2016567
  24. McGrath, B.P., Holmes, D.G.: Natural current balancing of multicell current source converters. IEEE Trans. Power Electron. 23(3), 1239-1246 (2008) https://doi.org/10.1109/TPEL.2008.921166