DOI QR코드

DOI QR Code

Initial rotor position estimation by pulsating high-frequency voltage injection considering mutual inductance

  • Received : 2021.04.28
  • Accepted : 2021.08.04
  • Published : 2021.10.20

Abstract

Pulsating high-frequency voltage injection is an effective method for estimating the initial rotor position for interior permanent magnet synchronous motors (IPMSMs). This method is based on the magnetic saliency of a motor rather than a back-electromotive-force (back-EMF) model. In addition, it is feasible when the motor is static or in low-speed operations. However, accurate estimation of the rotor position is realized on the assumption that the direct-axis and quadrature-axis of the motor are completely decoupled, which is not always satisfied. Then, the mutual inductance between the two axes introduces a theoretical error into the rotor position estimation. In this paper, the theoretical error of the rotor position estimation caused by mutual inductance is deduced. An improved initial rotor position estimation method is proposed to eliminate harmonic theoretical errors by injecting high-frequency voltage in the decoupling coordinate system. Finally, the effectiveness of this method is verified by experimental results.

Keywords

Acknowledgement

This work was supported by the National Key Research and Development Plan of China under Grant 2017YFB0103200.

References

  1. Ko, J.S., Choi, J.S., Chung, D.: Maximum torque control of an ipmsm drive using an adaptive learning fuzzy-neural network. J. Power Electron. 12(3), 468-476 (2012) https://doi.org/10.6113/JPE.2012.12.3.468
  2. Tang, Q., Shen, A., Luo, X.: IPMSM sensorless control by injecting bi-directional rotating HF carrier signals. IEEE Trans. Power Electron. (2018). https://doi.org/10.1109/TPEL.2018.2811126
  3. Bolognani, S., Calligaro, S., Petrella, R., Tursini, M.: Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing. IEEE Trans. Ind. Appl. 47(1), 96-104 (2011). https://doi.org/10.1109/TIA.2010.2090317
  4. Sun, W., Yu, Y., Wang, G., Li, B., Xu, D.: Design method of adaptive full order observer with or without estimated flux error in speed estimation algorithm. IEEE Trans. Power Electron. 31(3), 2609-2626 (2015). https://doi.org/10.1109/TPEL.2015.2440373
  5. Zhao, Y., Zhang, Z., Qiao, W., Wu, L.: An extended flux model-based rotor position estimator for sensorless control of salient-pole permanent-magnet synchronous machines. IEEE Trans. Power Electron. 30(8), 4412-4422 (2015). https://doi.org/10.1109/TPEL.2014.2358621
  6. Chen, Z., Tomita, M., Doki, S., Okuma, S.: An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors. IEEE Trans. Ind. Electron. 50(2), 288-295 (2003) https://doi.org/10.1109/TIE.2003.809391
  7. Shen, J., Iwasaki, S.: Sensorless control of ultrahigh-speed PM brushless motor using PLL and third harmonic back EMF. IEEE Trans. Ind. Electron. 53(2), 421-428 (2006). https://doi.org/10.1109/TIE.2006.870664
  8. Liu, J., Zhu, Z.: Improved sensorless control of permanent-magnet synchronous machine based on third-harmonic back EMF. IEEE Trans. Ind. Appl. 50(3), 1861-1870 (2014). https://doi.org/10.1109/TIA.2013.2284299
  9. Yoon, Y., Sul, S., Morimoto, S., Ide, K.: High-bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection. IEEE Trans. Ind. Appl. 47(3), 1361-1370 (2011). https://doi.org/10.1109/TIA.2011.2126552
  10. Luo, X., Tang, Q., Shen, A., Zhang, Q.: PMSM sensorless control by injecting HF pulsating carrier signal into estimated fixed-frequency rotating reference Frame. IEEE Trans. Industr. Electron. 63(4), 2294-2303 (2016). https://doi.org/10.1109/TIE.2015.2505679
  11. Kim, S., Im, J., Song, E., Kim, R.: A new rotor position estimation method of IPMSM using all-pass filter on high-frequency rotating voltage signal injection. IEEE Trans. Industr. Electron. 63(10), 6499-6509 (2016). https://doi.org/10.1109/TIE.2016.2592464
  12. Tang, Q., Shen, A., Luo, X., Xu, J.: PMSM sensorless control by injecting HF pulsating carrier signal into ABC frame. IEEE Trans. Power Electron. 32(5), 3767-3776 (2017). https://doi.org/10.1109/TPEL.2016.2583787
  13. Zhang, X., Li, H., Yang, S., Ma, M.: Improved initial rotor position estimation for PMSM drives based on HF pulsating voltage signal injection. IEEE Trans. Industr. Electron. 65(6), 4702-4713 (2018). https://doi.org/10.1109/TIE.2017.2772204
  14. Kang, Y.-K., Jeong, H.-G., Lee, K.-B., Lee, D.-C., Kim, J.-M.: Simple estimation scheme for initial rotor position and inductances for effective MTPA-operation in wind-power systems using an IPMSM. J. Power Electron. 10(4), 396-404 (2010) https://doi.org/10.6113/JPE.2010.10.4.396
  15. Raca, D., Harke, M., Lorenz, R.: Robust magnet polarity estimation for initialization of pm synchronous machines with near-zero saliency. IEEE Trans. Ind. Appl. 44(4), 1199-1209 (2008). https://doi.org/10.1109/TIA.2008.926195
  16. Xu, P., Zhu, Z.: Initial rotor position estimation using zero-sequence carrier voltage for permanent-magnet synchronous machines. IEEE Trans. Ind. Electron. 64(1), 149-158 (2017). https://doi.org/10.1109/TIE.2016.2596703
  17. Mei, K., Ding, S.: Second-order sliding mode controller design subject to an upper-triangular structure. IEEE Trans. Syst. Man Cybern. Syst. 51(1), 497-507 (2021). https://doi.org/10.1109/TSMC.2018.2875267
  18. Wu, Y., Jiang, B., Lu, N.: A descriptor system approach for estimation of incipient faults with application to high-speed railway traction devices. IEEE Trans. Syst. Man Cybern. Syst. 49(10), 2108-2118 (2019). https://doi.org/10.1109/TSMC.2017.2757264
  19. Liu, J., Zhu, Z.: Novel sensorless control strategy with injection of high-frequency pulsating carrier signal into stationary reference frame. IEEE Trans. Ind. Appl. 50(4), 2574-2583 (2014). https://doi.org/10.1109/TIA.2013.2293000
  20. Almarhoon, A., Zhu, Z., Xu, P.: Improved rotor position estimation accuracy by rotating carrier signal injection utilizing zero-sequence carrier voltage for dual three-phase PMSM. IEEE Trans. Ind.ustrial Electron.ics. ,64(6), 4454-4462 (2017). https://doi.org/10.1109/TIE.2016.2561261
  21. Guerrero, J., Leetmaa, M., Briz, F., Zamarron, A., Lorenz, R.: Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods. IEEE Trans. Ind. Appl. 41(2), 618-626 (2005). https://doi.org/10.1109/TIA.2005.844411
  22. Attaianese, C., Tomasso, G.: Predictive compensation of dead-time effects in VSI feeding induction motors. IEEE Trans. Ind. Appl. 37(3), 856-863 (2001). https://doi.org/10.1109/28.924768
  23. Kim, H., Kim, H., Youn, M.: A new on-line dead-time compensation method based on time delay control. In: IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society, pp. 1184-1189 (2001). https://doi.org/10.1109/IECON.2001.975949
  24. Wang, X., Xie, W., Dajaku, G., Kennel, R., Gerling, D., Lorenz, R.: position self-sensing evaluation of novel CW-IPMSMs with an HF injection method. IEEE Trans. Ind. Appl. 50(5), 3325-3334 (2014). https://doi.org/10.1109/TIA.2014.2311507
  25. Wang, H., Lu, K., Wang, D., Blaabjerg, F.: Simple and effective online position error compensation method for sensorless SPMSM drives. IEEE Trans. Ind. Appl. 56(2), 1475-1484 (2020). https://doi.org/10.1109/TIA.2019.2958792
  26. Guglielmi, P., Pastorelli, M., Vagati, A.: Cross-saturation effects in ipm motors and related impact on sensorless control. IEEE Trans. Ind. Appl. 42(6), 1516-1522 (2006) https://doi.org/10.1109/TIA.2006.882646
  27. Li, Y., Zhu, Z., Howe, D., Bingham, C.: Modeling of cross-coupling magnetic saturation in signal-injection-based sensorless control of permanent-magnet brushless ac motors. IEEE Trans. Magn. 43(6), 2552-2554 (2007) https://doi.org/10.1109/TMAG.2007.892319
  28. Li, Y., Zhu, Z., Howe, D., Bingham, C., Stone, D.: Improved rotor-position estimation by signal injection in brushless ac motors, accounting for cross-coupling magnetic saturation. IEEE Trans. Ind. Appl. 45(5), 1843-1850 (2009) https://doi.org/10.1109/TIA.2009.2027518