DOI QR코드

DOI QR Code

Quasi resonant converter for autonomous power supply

  • Strelkov, Vladimir (Institute of Electrical Engineering, Nizhny Novgorod State Technical University n.a. R.E. Alekseev) ;
  • Dar'enkov, Andrey (Institute of Electrical Engineering, Nizhny Novgorod State Technical University n.a. R.E. Alekseev) ;
  • Sosnina, Elena (Institute of Electrical Engineering, Nizhny Novgorod State Technical University n.a. R.E. Alekseev) ;
  • Shalukho, Andrey (Institute of Electrical Engineering, Nizhny Novgorod State Technical University n.a. R.E. Alekseev) ;
  • Lipuzhin, Ivan (Institute of Electrical Engineering, Nizhny Novgorod State Technical University n.a. R.E. Alekseev)
  • Received : 2020.04.07
  • Accepted : 2020.11.27
  • Published : 2021.03.20

Abstract

Quasiresonant converters (QRCs) are increasingly being used in autonomous power supply systems. These converters are efficient, have small dimensions, and operate stably when the load changes. This study is devoted to the development of a zero-current switching QRC with improved characteristics. The main advantages of this QRC are a wide range of regulation and a low level of output voltage ripple. These advantages are achieved by the recuperation of excess energy due to a transistor shunting the primary winding of a transformer. In this work, a mathematical model of advanced QRC (AQRC) is developed, and the quantitative relationship between the parameters of the AQRC power circuit elements is established. In addition, the electromagnetic processes occurring in the AQRC are studied on the Simulink model. Moreover, the AQRC characteristics for various operating modes are studied, and the rational parameters of its components are determined. Then, an AQRC prototype is created. The tests of the prototype are in good agreement with the models. Results show that the AQRC allows for the adjustment of the output voltage ranging from 0 to 100% of the rated value and has a standard level of electromagnetic compatibility.

Keywords

Acknowledgement

This research was funded by a Grant from the Russian Science Foundation (Project No. 20-19-00541).

References

  1. Voytenko, V., Stepenko, S., Velihorskyi, O., Chakirov, R., Roberts, D., Vagapov, Yu.: Digital control of a zero-current switching quasi-resonant boost converter. In: Proc. IEEE ITA, pp. 365-369 (2015)
  2. Mousavian, H., Bakhshai, A., Jain, P.: A ZVT cell for high-frequency quasi-resonant converters in ON-OFF mode for solar applications. In: Proc. IEEE ECCE, pp. 15-22 (2017)
  3. Annie, S.I., Salim, K.M., Tasneem, Z., Uddin, M.R.: Design and performance analysis of a ZVS parallel quasi resonant converter for a solar based induction cooking system. In: Proc. IEEE TENCON, pp. 2638-2641 (2016)
  4. Salehi, S., Gharehpetian, G.B., Monfared, J.M., Taheri, M., Moradi, H.: Analysis and design of current-fed high step up quasi-resonant DC-DC converter for fuel cell applications. In: Proc. PEDSTC2013, pp. 442-447 (2013)
  5. Wu, Q., Wang, Q., Xu, J., Li, H., Xiao, L.: A high-efficiency step-up current-fed push-pull quasi-resonant converter with fewer components for fuel cell application. IEEE Trans. Ind. Electron. 64(8), 6639-6648 (2017) https://doi.org/10.1109/TIE.2016.2638800
  6. Gorodny, A., Gordienko, V., Stepenko, S., Sereda, O., Boyko, S.: Impact of supply voltage change on the energy performance of boost quasi-resonant converter for radioelectronic equipment power supplies. In: Proc. IEEE MEES, pp. 232-235 (2018)
  7. Chen, K.-K.: A novel application of zero-current-switching quasiresonant buck converter for battery chargers. Math. Probl. Eng. 2011(481208), 1-16 (2011)
  8. Eshkevari, A.L., Zare, M.: Quasi-resonant switch-mode isolated lithium-ion battery charger with CC-CV modes of operations using secondary side controller. In: Proc. ICEE, pp. 1101-1106 (2017)
  9. Kitano, Y., Omori, H., Kimura, N., Morizane, T., Nakagawa, K., Nakaoka, M.: A new wireless EV charger using single switch ZVS resonant inverter with optimized power transfer and low-cost PFC. In: Proc. EDPE, pp. 515-521 (2015)
  10. de Oliveira Stein, C.M., Hey, H.L.: A true ZCZVT commutation cell for PWM converters. IEEE Trans. Power Electron. 15(1), 185-193 (2000) https://doi.org/10.1109/63.817376
  11. Doub, F., Yeferni, K., Rahmani, S., Al-Haooao, K.: Experimental evaluation of a zero-voltage-switched quasi-resonant buck converter. In: Proc. IEEE SSD, pp. 328-333 (2018)
  12. Dobakhshari, S.S., Milimonfared, J., Taheri, M., Moradisizkoohi, H.: A quasi-resonant current-fed converter with minimum switching losses. IEEE Trans. Power Electron. 32(1), 353-362 (2017) https://doi.org/10.1109/TPEL.2016.2528893
  13. Deepa, K., Sharika, M., Kumar, M.V.: Implementation of a new multi output push-pull primary ZVS converter. In: Proc. IEEE IICPE, pp. 1-5 (2013)
  14. Maksimovic, D., Cuk, S.: Constant frequency control of quasi-resonant converters. IEEE Trans. Power Electron. 6(1), 141-150 (1991) https://doi.org/10.1109/63.65012
  15. Barbi, J., Vieira, J.B., Bolacell, J.C.: A forward pulse-width modulated quasi-resonant converter, analysis, design and experimental results. In: Proc. IEEE IECON, pp. 21-26 (1989)
  16. Ning, G., Chen, W.: Asymmetric pulse frequency modulation with constant on-time for series resonant converter in high-voltage high-power applications. IEEE Access. 7, 176971-176981 (2019) https://doi.org/10.1109/access.2019.2957954
  17. Hu, J., Sagneri, A.D., Rivas, J.M., Han, Y., Davis, S.M., Perreault, D.J.: High-frequency resonant SEPIC converter with wide input and output voltage ranges. IEEE Trans. Power Electron. 27(1), 189-200 (2012) https://doi.org/10.1109/TPEL.2011.2149543
  18. Crisafulli, V., Pastore, C.V.: New control method to increase power regulation in a AC/AC quasi resonant converter for high efficiency Induction cooker. In: Proc. IEEE PEDG, pp. 628-635 (2012)
  19. Tang, C.-S., Shen, H., Lv, X.: A double closed-loop control method for quasi-resonant converter. WSEAS Trans. Circuits and Systems. 13, 405-411 (2004)
  20. Parvathy, P., Devarajan, N.: Simulation and implementation of quasi resonant DC-DC converter. J. Comput. Sci. 8(10), 1730-1738 (2012) https://doi.org/10.3844/jcssp.2012.1730.1738
  21. Taborda, J.A., Fajardo, P.P., Montes, F.F.: Control of buck quasi-resonant converter with delayed PWM scheme. In: Proc. IEEE PEPQA, pp. 1-5 (2015)
  22. Lu, Y.-J., Liang, T.-J., Lin, C.-H., Chen, K.-H.: Design and implementation of a bidirectional DC-DC forward/flyback converter with leakage energy recycled. In: Proc. ACEPT (2017)
  23. Soltanzadeh, K., Yousefi, M.R.: Regenerative-passive snubber two-switch forward converter. Electron. Lett. 54(10), 653-655 (2018) https://doi.org/10.1049/el.2018.0079