References
- Geng, A.: Solid State Laser and Its Application. National defense industry press, Beijing (2014)
- Wolz, M., Pietrzak, A., Kindsvater, A., Meusel, J., Stolberg, K., Hulsewede, R., Sebastian, J., Loyo, V.: Laser diode stacks:pulsed light power for nuclear fusion. High Power Laser Sci. Eng. 2, 29-36 (2016)
- Platz, R., Eppich, B., Rieprich, J., Pittroff, W., Erbert, G., Crump, P.: High duty cycle, highly efficient fiber coupled 940-nm pump module for high-energy solid-state lasers. High Power Laser Sci. Eng. 1, 17-21 (2016) https://doi.org/10.1017/hpl.2013.3
- Platz R., Frevert C., Eppich B., Rieprich J., Ginolas A., Kreutzmann S., Knigge S., Erbert G., Crump P.: Progress in high duty cycle, highly efficient fiber coupled 940-nm pump modules for high-energy class solid-state lasers. In: Proc. SPIE 10513, Components and Packaging for Laser Systems IV. (2018)
- Du, H.: A novel laser diode driver. Appl. Laser. 30(3), 214-218 (2010) https://doi.org/10.3788/AL20103003.0214
- Zhou, W., Jin, K.: Efficiency evaluation of laser diode in different driving modes for wireless power transmission. IEEE Trans. Power Electron. 30(11), 6237-6244 (2015) https://doi.org/10.1109/TPEL.2015.2411279
- Yao, W., Ji, Y.: Design of high-performance driving power supply for high-power DPSSL. Mach. Electron. 5, 15-18 (2010)
- Penovi, E., Retegui, R.G., Maestri, S., Uicich, G., Benedetti, M.: Multistructure power converter with h-bridge series regulator suitable for high-current high-precision-pulsed current source. IEEE Trans. Power Electron. 30(12), 6534-6542 (2014) https://doi.org/10.1109/TPEL.2014.2382533
- Wang, Z., Ma, X., Wang, C., Guo, F.: Study on the power supply of semiconductor laser with two-phase double chopper transformation. Laser Technol. 39(3), 386-390 (2015)
- Tsuda S., Tamida T., Hashimoto T., Morimoto T.: Power supply apparatus for driving laser diode provided with power supply for supplying power to laser oscillator. U.S. Patent 20180097336A1[P]. (2018)
- Yuan, Z., Xu, H.: Pulse power supply with faster response and low ripple current using inductive storage and interleaving technology. CPSS Trans. Power Electron. Appl. 5(1), 54-62 (2020) https://doi.org/10.24295/cpsstpea.2020.00005
- Li, M., Tse, C.K., Ma, X.: Calculation of steady-state solution of parallel-connected buck converters with active current sharing and its parameter sensitivity. Int. J. Circuit Theory Appl. 39(3), 275-297 (2011) https://doi.org/10.1002/cta.633
- Mao, H., Yao, L., Wang, C., Batarseh, I.: Analysis of inductor current sharing in nonisolated and isolated multiphase dc-dc converters. IEEE Trans. Ind. Electron. 54(6), 3379-3388 (2007) https://doi.org/10.1109/TIE.2007.905966
- Chen, H., Lu, C., Rout, U.S.: Decoupled master-slave current balancing control for three-phase interleaved Boost converters. IEEE Trans. Power Electron. 33(5), 3683-3687 (2018) https://doi.org/10.1109/tpel.2017.2760887
- Ruffo, R., Cirimele, V., Diana, M., Khalilian, M., Ganga, A.L., Guglielmi, P.: Sensorless control of the charging process of a dynamic inductive power transfer system with an interleaved nine-phase Boost converter. IEEE Trans. Power Electron. 65(10), 7630-7639 (2018)
- Wassinger, N., Retegui, R.G., Funes, M., Benedetti, M.: Digital control for a multiple-stage pulsed current source. IEEE Trans. Industr. Inf. 9(2), 1122-1129 (2013) https://doi.org/10.1109/TII.2012.2221723
- Yan, Y., Lee, F.C., Mattavelli, P., Liu, P.: I2 Average Current Mode Control for Switching Converters. IEEE Trans. Power Electron. 29(4), 2027-2036 (2014) https://doi.org/10.1109/TPEL.2013.2265381
- Vidal-Idiarte, E., Marcos-Pastor, A., Giral, R., Calvente, J., Martinez-Salamero, L.: Direct digital design of a sliding mode-based control of a PWM synchronous buck converter. IET Power Electron. 10(13), 1714-1720 (2017) https://doi.org/10.1049/iet-pel.2016.0975
- Dong-Choon, L.: Lee G-Myoung, Lee Ki-Do: DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization. IEEE Trans. Ind. Appl. 36(3), 826-833 (2000) https://doi.org/10.1109/28.845058
- Cheng, L., Acuna, P., Aguilera, R.P., Jiang, J., Wei, S., Fletcher, J.E., Lu Dylan, D.C.: Model predictive control for DC-DC Boost converters with reduced-prediction horizon and constant switching frequency. IEEE Trans. Power Electron. 33(10), 9064-9075 (2018) https://doi.org/10.1109/tpel.2017.2785255
- Zhang, Y., Zhang, Y.M., Wang, X.: Comparative study on predictive dead-beat peak current, valley current and average current control algorithms for phase-shifted full-bridge DC/DC converters. J. Power Electron. 20(1), 87-99 (2020) https://doi.org/10.1007/s43236-019-00021-6
- Chen, J., Prodic, A., Erickson, R.W., Maksimovic, D.: Predictive digital current programmed control. IEEE Trans. Power Electron. 18(1), 411-419 (2003) https://doi.org/10.1109/TPEL.2002.807140
- Zhou, G., Mao, G., Zhao, H., Zhang, W., Xu, S.: Digital average voltage/digital average current predictive control for switching DC-DC converters. IEEE J. Emerg. Sel. Top. Power Electron. 6(4), 1819-1830 (2018) https://doi.org/10.1109/jestpe.2018.2868974
- Fang, W., Liu, X.D., Liu, Y.F.: A digital parallel current-Mode control algorithm for DC-DC converters. IEEE Trans. Industr. Inf. 10(14), 2146-2153 (2014) https://doi.org/10.1109/TII.2014.2358455
- Erickson Robert W., Maksimovic D.: Fundamentals of power electronics. New York, Boston (2001)