DOI QR코드

DOI QR Code

Online probabilistic forecasting method for trapezoidal photovoltaic stream data

  • Yu, Haiyang (School of Computer Science and Technology, Changchun University of Science and Technology) ;
  • Chen, Chunyi (School of Computer Science and Technology, Changchun University of Science and Technology) ;
  • Yang, Huamin (School of Computer Science and Technology, Changchun University of Science and Technology)
  • Received : 2021.05.07
  • Accepted : 2021.08.11
  • Published : 2021.11.20

Abstract

For the probabilistic forecasting of photovoltaic generation, the design of a feasible online predictive framework is a challenging problem. To deal with this issue, an ensemble dynamic OS-ELM based on quantile estimation has been proposed. Considering inherent intermittent and random variations of the photovoltaic sequence, the weights of the forecasting model are updated according to the loss suffered. At the same time, the accommodative feature threshold can be calculated on the basis of increasing characteristics space, which builds the optimal network architecture for point forecast. A two-dimensional kernel density estimation algorithm based on a fuzzy inference method is exploited. This method breaks through the assumptive limit of error distribution. The changeable parameters help the model to be suitable for power fluctuations. Both the arriving data sample and the increasing feature space are tackled. Numerical experiments are conducted on two practical applications for solar power systems. The results show that the proposed algorithm not only has lower generalization error, but also provides higher confidence coefficient.

Keywords

Acknowledgement

The work received the support of the National Natural Science Foundation of China under Grant 61775022 and U19A2063, the Science and Technology Research Program of Education Department of Jilin Province of China (No.JJKH20210844KJ), and the Development Program of Science and Technology of Jilin Province of China (No.YDZJ202101ZYTS151, 2020122351JC). The authors gratefully acknowledge support from the Key Laboratory of Optical Control and Optical Information Transmission Technology, Ministry of Education.

References

  1. Elnozahy, A., Yousef, A.M., Abo-Elyousr, F.K., et al.: Performance improvement of hybrid renewable energy sources connected to the grid using artificial neural network and sliding mode control. J. Power Electron. 3, 1-14 (2021)
  2. Shi, J.Y., Xue, F., Ling, L.T., et al.: Combining model-based and heuristic techniques for fast tracking the global maximum power point of a photovoltaic string. J. Power Electron. 17(2), 476-489 (2017) https://doi.org/10.6113/JPE.2017.17.2.476
  3. Dong, Y., Dong, Z., Zhao, T., et al.: Short term load forecasting with markovian switching distributed deep belief networks. Int. J. Electr. Power Energy Syst. 130, 106942 (2021) https://doi.org/10.1016/j.ijepes.2021.106942
  4. Yang, Y., Che, J., Deng, C., et al.: Sequential grid approach based support vector regression for short-term electric load forecasting. Appl. Energy 238, 1010-1021 (2019) https://doi.org/10.1016/j.apenergy.2019.01.127
  5. Wang, S., Minku, L., Yao, X.: Resampling-based ensemble methods for online class imbalance learning. IEEE Trans. Knowl. Data Eng. 27(5), 1356-1368 (2015) https://doi.org/10.1109/TKDE.2014.2345380
  6. Zhang, Q., Zhang, P., Long, G., et al.: Online learning from trapezoidal data streams. IEEE Trans. Knowl. Data Eng. 28(10), 2709-2723 (2016) https://doi.org/10.1109/TKDE.2016.2563424
  7. Sobri, S., Sam, K., Nasrudin, A.: Solar photovoltaic generation forecasting methods: a review. Energy Convers. Manag. 156, 459-497 (2018) https://doi.org/10.1016/j.enconman.2017.11.019
  8. Ouyang, T.: Feature learning for stacked ELM via low-rank matrix factorization. Neurocomputing 448, 7553 (2021) https://doi.org/10.1016/j.neucom.2021.03.110
  9. Huang, G., Huang, G.B., Song, S., et al.: Trends in extreme learning machines: a review. Neural Netw. 61, 32-48 (2015) https://doi.org/10.1016/j.neunet.2014.10.001
  10. Xiao, C., Sutanto, D., Muttaqi, K.M., et al.: Online sequential extreme learning machine algorithm for better predispatch electricity price forecasting grids. IEEE Trans. Ind. Appl. 57, 1860-1871 (2021) https://doi.org/10.1109/TIA.2021.3051105
  11. Tang, P., Chen, D., Hou, Y.: Entropy method combined with extreme learning machine method for the short-term photovoltaic power generation forecasting. Chaos Solitons Fractals 89, 243-248 (2016) https://doi.org/10.1016/j.chaos.2015.11.008
  12. Wang, J., Ran, R., Zhou, Y.: A Short-term photovoltaic power prediction model based on an FOS-ELM algorithm. Appl. Sci. 7(4), 423 (2017) https://doi.org/10.3390/app7040423
  13. Gneiting, T., Matthias, K.: Probabilistic forecasting. Ann. Rev. Stat. Appl. 1, 125-151 (2014) https://doi.org/10.1146/annurev-statistics-062713-085831
  14. Liu, W., Xu, Y.: Randomized learning-based hybrid ensemble model for probabilistic forecasting of PV Power Generation[J]. IET Gener. Transm. Distrib. 14(24), 5909-5917 (2020) https://doi.org/10.1049/iet-gtd.2020.0625
  15. Lauret, P., David, M., Pedro, H.: Probabilistic solar forecasting using quantile regression models. Energies 10(10), 1591 (2017) https://doi.org/10.3390/en10101591
  16. Fatemi, S., Kuh, A., Fripp, M.: Parametric methods for probabilistic forecasting of solar irradiance. Renew. Energy 129, 666-676 (2018) https://doi.org/10.1016/j.renene.2018.06.022
  17. Golestaneh, F., Pinson, P., Gooi, H.: Very short-term nonparametric probabilistic forecasting of renewable energy generation-with application to solar energy. IEEE Trans. Power Syst. 31(5), 3850-3863 (2016) https://doi.org/10.1109/TPWRS.2015.2502423
  18. Yu, Y., Han, X., Yang, M., et al.: Probabilistic prediction of regional wind power based on spatiotemporal quantile regression. IEEE Trans. Ind. Appl. 56, 6117-6127 (2020) https://doi.org/10.1109/tia.2020.2992945
  19. Manjhi, D., Chaturvedi, A.: Reuse estimate and interval prediction using MOGA-NN and RBF-NN in the functional paradigm. Sci. Comput. Program. 208, 102643 (2021) https://doi.org/10.1016/j.scico.2021.102643
  20. Wan, C., et al.: Direct quantile regression for nonparametric probabilistic forecasting of wind power generation. IEEE Trans. Power Syst. 32(4), 2767-2778 (2017) https://doi.org/10.1109/TPWRS.2016.2625101
  21. Xu, Q., Zhang, J., Jiang, C., et al.: Weighted quantile regression via support vector machine. Expert Syst. Appl. 42(13), 5441-5451 (2015) https://doi.org/10.1016/j.eswa.2015.03.003
  22. Fliess, M., Join, C., Voyant, C.: Prediction bands for solar energy: new short-term time series forecasting techniques. Sol. Energy 166, 519-528 (2018) https://doi.org/10.1016/j.solener.2018.03.049
  23. Mahmoud, T., Dong, Z., Ma, J.: An advanced approach for optimal wind power generation prediction intervals by using self-adaptive evolutionary extreme learning machine. Renew. Energy 126, 254-269 (2018) https://doi.org/10.1016/j.renene.2018.03.035
  24. Verbois, H., Rusydi, A., Thiery, A.: Probabilistic forecasting of day-ahead solar irradiance using quantile gradient boosting. Sol. Energy 173, 313-327 (2018) https://doi.org/10.1016/j.solener.2018.07.071
  25. Gao, D., Huang, M.: Prediction of remaining useful life of lithium-ion battery based on multi-kernel support vector machine with p swarm optimization. J. Power Electron. 17(5), 1288-1297 (2017) https://doi.org/10.6113/JPE.2017.17.5.1288
  26. Abuogo, J.O.: Machine learning approach for sorting SiC MOSFET devices for paralleling. J. Power Electron 20(1), 329-340 (2020) https://doi.org/10.1007/s43236-019-00028-z
  27. UQ SOLAR Photovoltaic Data. 2020. The University of Queensland. http://solar.uq.edu.au/user/reportPower.php.
  28. Bai, Z., Huang, G.B., Wang, D., et al.: Sparse extreme learning machine for classification. IEEE Trans. Cybern. 44(10), 1858-1870 (2014) https://doi.org/10.1109/TCYB.2014.2298235
  29. Ma, C., Ouyang, J., Chen, H., Ji, J.: A novel kernel extreme learning machine algorithm based on self-adaptive artificial bee colony optimisation strategy. Int. J. Syst. Sci. 47(6), 1342-1357 (2016) https://doi.org/10.1080/00207721.2014.924602
  30. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108-132 (2009) https://doi.org/10.1016/j.amc.2009.03.090
  31. Zhou, J., Foster, D., Stine, R., et al.: Streamwise feature selection. J. Mach. Learn. Res. 7(9), 1861-1885 (2006)
  32. Zhao, W., Li, Z., Xu, J., et al.: Novel fuzzy direct torque control based on constructed functional transformed grey model. J. Power Electron. 21(6), 1-10 (2021) https://doi.org/10.1007/s43236-020-00150-3
  33. Tahmasebifar, R., Sheikh-El-Eslami, M.K., Kheirollahi, R.: Point and interval forecasting of real-time and day-ahead electricity prices by a novel hybrid approach[J]. IET Gener. Transm. Distrib. 11(9), 2173-2183 (2017) https://doi.org/10.1049/iet-gtd.2016.1396