DOI QR코드

DOI QR Code

Improved switching transient model suitable for power loss evaluation of SiC-based asymmetric H-bridge power converters in SRGs

  • Cui, Sihang (School of Electrical and Power Engineering, University of Mining and Technology) ;
  • Chen, Hao (School of Electrical and Power Engineering, University of Mining and Technology) ;
  • Liu, Liang (School of Electrical and Power Engineering, University of Mining and Technology) ;
  • Yang, Fan (School of Electrical and Power Engineering, University of Mining and Technology) ;
  • Xu, Shuai (School of Electrical Engineering, Zhengzhou University)
  • Received : 2020.11.30
  • Accepted : 2021.04.01
  • Published : 2021.07.20

Abstract

This paper presented an improved switching transient model of silicon carbide (SiC)-based asymmetric H-bridge (AHB) power converter for a switched reluctance generator (SRG), which takes the nonlinear phase inductance of the SRG into consideration. First, a systematic mathematic derivation is carried out and the switching transient model is established. Second, the impact of the nonlinear phase inductance of the SRG on switching transients is verified by PSpice & Simulink co-simulations. Third, a power loss model is established by the transient model through PSpice & Simulink co-simulations. The model is conducted to indicate the power loss characteristics of the SiC-based AHB power converter. Simulation results indicate that the nonlinear phase inductance of the SRG is able to accelerate the switching speed of SiC-MOSFETs, and that the SiC converter is advantageous in terms of power loss. Experimental results illustrate that the established power loss model experiences high accuracy. In addition, SiC devices are able to strengthen the power density and efficiency of a converter while reducing its heat dissipation requirements.

Keywords

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grant 51977209.

References

  1. Kioskeridis, I., Mademlis, C.: Optimal efficiency control of switched reluctance generators. IEEE Trans. Power Electron. 21(4), 1062-1071 (2006) https://doi.org/10.1109/TPEL.2006.876827
  2. Chen, H., Gu, J.J.: Implementation of the Three-Phase Switched Reluctance Machine System for Motors and Generators. IEEE/ASME Trans. Mechatron. 15(3), 421-432 (2010) https://doi.org/10.1109/TMECH.2009.2027901
  3. Rostami, M., Madani, S.M., Ademi, S.: Sensorless closed-loop voltage and frequency control of stand-alone DFIGs introducing direct flux-vector control. IEEE Trans. Industr. Electron. 65(7), 6078-6088 (2020) https://doi.org/10.1109/TIE.2019.2955421
  4. Liu, X., Park, K., Chen, Z.: A novel excitation assistance switched reluctance wind power generator. IEEE Trans. Magn. 50(11), 1-4 (2014)
  5. Cardenas, R., Pena, R., Perez, M., Clare, J., Asher, G., Wheeler, P.: Control of a switched reluctance generator for variable-speed wind energy applications. IEEE Trans. Energy Convers. 20(4), 781-791 (2005) https://doi.org/10.1109/TEC.2005.853733
  6. Sikder, C., Husain, I., Sozer, Y.: Switched reluctance generator control for optimal power generation with current regulation. IEEE Trans. Ind. Appl. 50(1), 307-316 (2014) https://doi.org/10.1109/TIA.2013.2270971
  7. Lee, D.H., Yu, S.: High efficiency operation of a switched reluctance generator over a wide speed range. J. Power Electron. Publ. Korean Inst. Power Electron. 15(1), 123-130 (2015)
  8. Chen, H., Xu, S., Cui, S.: Reliability evaluation for power converter of SRM on fault-tolerance capability and thermal stress. IEEE Trans. Ind. Electron. 68(2), 1749-1758 (2021) https://doi.org/10.1109/tie.2020.2977564
  9. Xu, S., Chen, H., Dong, F., Cui, S.: Online sensorless fault diagnosis and remediation strategies selection of transistors for power converter in SRD. IET Electr. Power Appl. 13(10), 1553-1564 (2019) https://doi.org/10.1049/iet-epa.2019.0087
  10. She, X., Huang, A.Q., Lucia, O., Ozpineci, B.: Review of silicon carbide power devices and their applications. IEEE Trans. Industr. Electron. 64(10), 8193-8205 (2017) https://doi.org/10.1109/TIE.2017.2652401
  11. Zhou, X., Wang, Y., Yue, R., Dai, G., Li, J.: Physics-based spice model on the dynamic characteristics of silicon carbide Schottky barrier diode. IET Power Electron. 9(15), 2803-2807 (2016) https://doi.org/10.1049/iet-pel.2016.0399
  12. Elasser, A., et al.: A comparative evaluation of new silicon carbide diodes and state-of-the-art silicon diodes for power electronic applications. IEEE Trans. Ind. Appl. 39(4), 915-921 (2003) https://doi.org/10.1109/TIA.2003.813730
  13. Hazra, S., et al.: High switching performance of 1700-V, 50-A SiC power MOSFET over Si IGBT/BiMOSFET for advanced power conversion applications. IEEE Trans. Power Electron. 31(7), 4742-4754 (2016) https://doi.org/10.1109/TPEL.2015.2432012
  14. Zhang, Z., Wang, F., Tolbert, L.M., Blalock, B.J., Costinett, D.J.: Evaluation of switching performance of SiC devices in PWM INVERTER-FED INDUCTION MOTOR DRIVES. IEEE Trans. Power Electron. 30(10), 5701-5711 (2015) https://doi.org/10.1109/TPEL.2014.2375827
  15. Haihong, Q., Haotian, X., Ziyue, Z., Xin, N., Huajuan, X., Dafeng, F.: Comparisons of SiC and Si devices for PMSM drives. In: 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia) (2016)
  16. Okabayashi, K., Honda, K., Sugiura, T., Kakigano, H.: Noise reduction using high-switching-frequency operation with SiC MOSFET for switched reluctance motors. In: 19th International Conference on Electrical Machines and Systems. (2016)
  17. Burkart, R.M., Kolar, J.W.: Comparative life cycle cost analysis of Si and SiC PV converter systems based on advanced eta-rho-sigma multiobjective optimization techniques. IEEE Trans. Power Electron. 32(6), 4344-4358 (2017) https://doi.org/10.1109/TPEL.2016.2599818
  18. Filsecker, F., Alvarez, R., Bernet, S.: The investigation of a 6.5-kV, 1-kA SiC diode module for medium voltage converters. IEEE Trans. Power Electron. 29(5), 2272-2280 (2014) https://doi.org/10.1109/TPEL.2013.2278190
  19. Pobegen, G., Aichinger T., Nelhiebel, M., Grasser, T.: Understanding temperature acceleration for NBTI. In: Proc. IEDM, 614-617, (2011)
  20. Huard, V., Denais, M., Parthasarathy, C.: NBTI degradation: from physical mechanisms to modelling. Microelectron. 46, 1-23 (2006) https://doi.org/10.1016/j.microrel.2005.02.001
  21. Dankovic, D., Mitrovic, N., Prijic, Z., Stojadinovic, N.D.: Modeling of NBTS Effects in P-channel power VDMOSFETs. IEEE Trans. Device Mater. Reliab. 20(1), 204-213 (2020) https://doi.org/10.1109/tdmr.2020.2974131
  22. Kambour, K.E., Nguyen, D.D., Kouhestani, C., Devine, R.A.B.: Comparison of NBTI and irradiation induced interface states. InL Proc. IEEE IIRW, 157-160, (2013)
  23. Dankovic, D., Manic, I., Djoric-Veljkovic, S., Davidovic, V., Golubovic, S., Stojadinovic, N.: NBT stress-induced degradation and lifetime estimation in p-channel power VDMOSFETs. Microelectron. Reliab. 46(9), 1828-1833 (2006) https://doi.org/10.1016/j.microrel.2006.07.077
  24. Qi, L., Shen, Z., Gao, J., Cui, X., Kang, W.: Wideband modeling and transient analysis of sub-module in modular multilevel converter. COMPELInt J Comput Math Electr Electron Eng. 36(6), 1792-1805 (2017) https://doi.org/10.1108/COMPEL-12-2016-0582
  25. Liu, T., Ning, R., Wong, T.T.Y., Shen, Z.J.: Modeling and analysis of SiC MOSFET switching oscillations. IEEE J. Emerg. Sel. Top. Power Electron. 4(3), 747-756 (2016) https://doi.org/10.1109/JESTPE.2016.2587358
  26. Liu, T., Wong, T.T.Y., Shen, Z.J.: A survey on switching oscillations in power converters. IEEE J. Emerg. Sel. Top. Power Electron. 8(1), 893-908 (2020) https://doi.org/10.1109/jestpe.2019.2897764
  27. Li, X., et al.: Achieving Zero switching loss in silicon carbide MOSFET. IEEE Trans. Power Electron. 34(12), 12193-12199 (2019) https://doi.org/10.1109/tpel.2019.2906352
  28. Fabre, J., Ladoux, P., Piton, M.: Characterization and implementation of dual-SiC MOSFET modules for future use in traction converters. IEEE Trans. Power Electron. 30(8), 4079-4090 (2015) https://doi.org/10.1109/TPEL.2014.2352863
  29. Jiang, D., Burgos, R., Wang, F., Boroyevich, D.: Temperature-dependent characteristics of SiC devices: performance evaluation and loss calculation. IEEE Trans. Power Electron. 27(2), 1013-1024 (2012) https://doi.org/10.1109/TPEL.2011.2159624
  30. Liang, M., Zheng, T.Q., Li, Y.: An improved analytical model for predicting the switching performance of SiC MOSFETs. JPower Electron. 16(1), 374-387 (2016) https://doi.org/10.6113/JPE.2016.16.1.374
  31. Safari, S., Castellazzi, A., Wheeler, P.: Experimental and analytical performance evaluation of SiC power devices in the matrix converter. IEEE Trans. Power Electron. 29(5), 2584-2596 (2014) https://doi.org/10.1109/TPEL.2013.2289746