DOI QR코드

DOI QR Code

Selection-based capacitor voltage balancing control for modular multilevel converters

  • Luo, Wei (Department of Electrical Engineering, University of Shanghai for Science and Technology) ;
  • Ma, Yifan (Department of Electrical Engineering, University of Shanghai for Science and Technology) ;
  • Zheng, Changbao (Collaborative Innovation Center of Industrial Energy-Saving and Power Quality Control, Anhui University)
  • Received : 2020.12.05
  • Accepted : 2021.07.15
  • Published : 2021.10.20

Abstract

The modular multilevel converter (MMC) is a promising topology for high-power converters. The capacitor voltage balancing method for the submodules (SMs) is one of the key technologies in terms of modular multilevel converters. Aiming at the problems of the large calculation burden and the high switching frequency in the traditional capacitor voltage balancing method, an improved balancing method based on a novel selection algorithm for MMCs is proposed in this paper. The proposed method can avoid the sorting operation of the arm SM voltages in each control cycle without reducing the control precision of the capacitor voltages. In addition, it greatly improves the sorting efficiency. Thus, a criterion for algorithm rerun is introduced, which makes the MMC controller avoid reordering the capacitor voltages and leave the control signals unchanged when the capacitor voltages experience small changes. Finally, simulation and experimental results confirm the feasibility and effectiveness of the proposed method.

Keywords

Acknowledgement

This work was supported by Collaborative Innovation Center of industrial energy-saving and power quality control, Anhui University, Anhui (KFKT201903).

References

  1. Lesnicar, A., Marquardt, R.: An innovative modular multilevel converter topology suitable for a wide power range. In: Proceedings of 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 6 (2003)
  2. Kouro, S., Malinowski, M., Gopakumar, K., Pou, J., Franquelo, L.G., Wu, B.: Recent advances and industrial applications of multilevel converters. IEEE Trans. Ind. Electron. 57(8), 2553-2580 (2010) https://doi.org/10.1109/TIE.2010.2049719
  3. Perez, M.A., Bernet, S., Rodriguez, J., Kouro, S., Lizana, R.: Circuit topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE Trans. Power Del. 30(1), 4-17 (2015) https://doi.org/10.1109/TPEL.2014.2310127
  4. Rohner, S., Bernet, S., Hiller, M., Sommer, R.: Modulation, losses, and semiconductor requirements of modular multilevel converters. IEEE Trans. Ind. Electron. 57(8), 2633-2642 (2010) https://doi.org/10.1109/TIE.2009.2031187
  5. Saad, H., Guillaud, X., Mahseredjian, J., Dennetiere, S., Nguefeu, S.: MMC capacitor voltage decoupling and balancing controls. IEEE Trans. Power Deliv. 30(2), 704-712 (2015) https://doi.org/10.1109/TPWRD.2014.2338861
  6. Luo, Y., Li, Z., Xu, L., Xiong, X., Li, Y., Zhao, C.: An adaptive voltage-balancing method for high-power modular multilevel converters. IEEE Trans. Ind. Electron. 33(4), 2901-2912 (2018) https://doi.org/10.1109/TPEL.2017.2703839
  7. Luo, L., Zhang, Y., Jia, L., Yang, N., Yang, L., Zhang, H.: Capacitor static voltage balance based on auxiliary-power supply pulse width control for MMC. IET Power Electron. 11(11), 1796-1803 (2018) https://doi.org/10.1049/iet-pel.2017.0672
  8. Lyu, J., Cai, X., Amin, M., Molinas, M.: Sub-synchronous oscillation mechanism and its suppression in MMC-based HVDC connected wind farms. IET Gen. Trans. Dist. 12(4), 1021-1029 (2017)
  9. Dekka, A., Wu, B., Zargari, N.R.: A novel modulation scheme and voltage balancing algorithm for modular multilevel converter. IEEE Trans. Ind. Appl. 52(1), 432-443 (2016) https://doi.org/10.1109/TIA.2015.2477481
  10. Siemaszko, D.: Fast sorting method for balancing capacitor voltages in modular multilevel converters. IEEE Trans. Ind. Electron. 30(1), 463-470 (2015) https://doi.org/10.1109/TPEL.2014.2312101
  11. Hagiwara, M., Akagi, H.: Control and experiment of pulse width-modulated modular multilevel converters. IEEE Trans. Ind. Electron. 24(7), 1737-1746 (2009) https://doi.org/10.1109/TPEL.2009.2014236
  12. Tu, Q., Xu, Z.: Impact of sampling frequency on harmonic distortion for modular multilevel converter. IEEE Trans. Power Deliv. 26(1), 298-306 (2011) https://doi.org/10.1109/TPWRD.2010.2078837
  13. He, Z., Xu, J., Zhao, C., Peng, M.: A capacitor voltage balancing strategy adopting prime factorization method and shell sorting algorithm for modular multilevel converter. In: Proceedings of the CSEE, pp. 2980-2988 (2015)
  14. Zhao, F., Xiao, G., Peng, C.: Insertion sort correction of two-way merge sort algorithm for balancing capacitor voltages in MMC with reduced computational load. In: Proceedings of IEEE 8th International Power Electronics and Motion Control Conference, pp. 748-753 (2016)
  15. Huang, J., Yang, B., Guo, F.: Priority sorting approach for modular multilevel converter based on simplified model predictive control. IEEE Trans. Ind. Electron. 65(6), 4819-4830 (2017) https://doi.org/10.1109/tie.2017.2774725
  16. Liu, P., Wang, Y., Cong, W., Lei, W.: Grouping-sorting-optimized model predictive control for modular multilevel converter with reduced computational load. IEEE Trans. Power Electron. 31(3), 1896-1907 (2016) https://doi.org/10.1109/TPEL.2015.2432767
  17. Tu, Q., Xu, Z., Xu, L.: Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters. IEEE Trans. Power Deliv. 26(3), 2009-2017 (2011) https://doi.org/10.1109/TPWRD.2011.2115258
  18. Qin, J., Saeedifard, M.: Reduced switching-frequency voltage-balancing strategies for modular multilevel HVDC converters. IEEE Trans. Power Deliv. 28(4), 2403-2410 (2013) https://doi.org/10.1109/TPWRD.2013.2271615
  19. Kumar, A.R., Bhaskar, M.S., Subramaniam, U., Almakhles, D., Padmanaban, S., Bo-Holm Nielsen, J.: An improved harmonics mitigation scheme for a modular multilevel converter. IEEE Access. 7, 147244-147255 (2019) https://doi.org/10.1109/access.2019.2946617
  20. Moon, J., Gwon, J., Park, J.W., Kang, D., Kim, J.: Model predictive control with a reduced number of considered states in a modular multilevel converter for HVDC system. IEEE Trans. Power Deliv., 30(2), 608-617 (2015) https://doi.org/10.1109/TPWRD.2014.2303172
  21. Wang, C., Xiao, L., Zhang, L.: Analysis of distortions in switch drives and currents related to balance strategy with sort method in MMC systems. J. Power Electron. 20(2), 399-409 (2020) https://doi.org/10.1007/s43236-020-00046-2
  22. Chen, B., Chen, Y., Tian, C., Yuan, J., Yao, X.: Analysis and suppression of circulating harmonic currents in a modular multilevel converter considering the impact of dead time. IEEE Trans. Power Electron. 30(7), 3542-3552 (2015) https://doi.org/10.1109/TPEL.2014.2346957

Cited by

  1. Multilevel Inverter: A Survey on Classical and Advanced Topologies, Control Schemes, Applications to Power System and Future Prospects vol.14, pp.18, 2021, https://doi.org/10.3390/en14185773