DOI QR코드

DOI QR Code

Imbalance phenomenon caused by CPS-PWM strategy for MMC systems

  • Wang, Chuyang (College of Energy and Electrical Engineering, Hohai University) ;
  • Zhang, Li (College of Energy and Electrical Engineering, Hohai University) ;
  • Zhang, Zitao (College of Energy and Electrical Engineering, Hohai University) ;
  • Tao, Yicheng (College of Energy and Electrical Engineering, Hohai University)
  • Received : 2020.06.01
  • Accepted : 2020.09.29
  • Published : 2021.01.20

Abstract

The carrier phase-shift PWM strategy is widely used in modular multilevel converters to satisfy the driver demands of the numerous switches in submodules. However, the traditional carrier phase-shift PWM strategy can cause an imbalance phenomenon in the submodule capacitor voltages, which deteriorates the system working performance. This study develops a mathematical model of an MMC system, which is the basis of a quantitative analysis of the relations between the PWM strategy and the imbalance phenomenon. A novel method is then proposed to provide an accurate description of the cause of the imbalance phenomenon in relation to the PWM strategy. Based on the above analysis, a quantitative analysis of the imbalance phenomenon in the capacitor voltages is used to further measure the magnitudes of the imbalance phenomenon. The effect of the PWM strategy on the capacitor voltages is finally demonstrated via experiments.

Keywords

Acknowledgement

This project is supported by National Natural Science Foundation of China (52007052), China Postdoctoral Science Foundation (2020M671315), and Fundamental Research Funds for the Central Universities (2013/B19020041).

References

  1. Kim, K., Jae-Hyuk, K., Kim, D., Han, B., Lee, J.: Improved precharging method for MMC-based HVDC systems operated in nearest level control. J. Power Electron. 17(1), 127-135 (2017) https://doi.org/10.6113/JPE.2017.17.1.127
  2. Zhang, J., Zhao, C.: Control strategy of MMC-HVDC under unbalanced grid voltage conditions. J. Power Electron. 15(6), 1499-1507 (2015) https://doi.org/10.6113/JPE.2015.15.6.1499
  3. Liu, Y., Chen, Q., Li, N., Xie, B., Wang, J., Ji, Y.: On DC-side impedance frequency characteristics analysis and DC voltage ripple prediction under unbalanced conditions for MMC-HVDC system based on maximum modulation index. J. Power Electron. 16(1), 319-328 (2016) https://doi.org/10.6113/JPE.2016.16.1.319
  4. Cao, G., Sun, K., Jiang, S., Lu, S., Wang, Y.: A modular DC/DC photovoltaic generation system for HVDC grid connection. Chin. J. Electr. Eng. 2(2), 56-64 (2018)
  5. Deng, F., Lu, Y., Liu, C.I., Heng, Q., Yu, Q., Zhao, J.: Overview on submodule topologies, modeling, modulation, control schemes, fault diagnosis, and tolerant control strategies of modular multilevel converters. Chin. J. Electr. Eng. 6(1), 1-21 (2020) https://doi.org/10.23919/cjee.2020.000001
  6. Lee, J., Park, J., Kang, D., Lee, J., Yoo, D., Lee, J.: Comparison of capacitor voltage balancing methods for 1GW MMC-HVDC based on real-time digital simulator and physical control systems. J. Power Electron. 19(5), 1171-1181 (2019) https://doi.org/10.6113/jpe.2019.19.5.1171
  7. H. M. P., and Bina, M. T.: A transformerless medium-voltage STATCOM topology based on extended modular multilevel converters. IEEE Trans. Power Electron. 26(5), 1534-1545 (2011) https://doi.org/10.1109/TPEL.2010.2085088
  8. Guan, M., Xu, Z.: Modeling and control of a modular multilevel converter-Based HVDC system under imbalanced grid conditions. IEEE Trans. Power Electron. 27(12), 4858-4867 (2012) https://doi.org/10.1109/TPEL.2012.2192752
  9. Li, Z., Wang, P., Zhu, H., Chu, Z., Li, Y.: An improved pulse width modulation method for chopper-cell-based modular multilevel converters. IEEE Trans. Power Electron. 27(8), 3472-3481 (2012) https://doi.org/10.1109/TPEL.2012.2187800
  10. Montesinos-Miracle, D., Massot-Campos, M., Bergas-Jane, J., Galceran-Arellano, S.: Design and control of a modular multilevel DC/DC converter for regenerative applications. IEEE Trans. Power Electron. 28(8), 3970-3979 (2013) https://doi.org/10.1109/TPEL.2012.2231702
  11. Song, Q., Liu, W., Li, X., Rao, H., Xu, S., Li, L.: A steady-state analysis method for a modular multilevel converter. IEEE Trans. Power Electron. 28(8), 3702-3713 (2013) https://doi.org/10.1109/TPEL.2012.2227818
  12. Zhang, M., Huang, L., Yao, W., Lu, Z.: Circulating harmonic current elimination of a CPS-PWM-based modular multilevel converter with a plug-in repetitive controller. IEEE Trans. Power Electron. 29(4), 2083-2097 (2014) https://doi.org/10.1109/TPEL.2013.2269140
  13. Rahim, N.A., Elias, M.F.M., Hew, W.P.: Transistor-clamped h-bridge based cascaded multilevel inverter with new method of capacitor voltage balancing. IEEE Trans. Power Electron. 60(8), 2943-2956 (2013) https://doi.org/10.1109/TED.2013.2272651
  14. Lu, S., Yuan, L., Li, K., Zhao, Z.: An improved phase-shifted carrier modulation scheme for a hybrid modular multilevel converter. IEEE Trans. Power Electron. 32(1), 81-97 (2017) https://doi.org/10.1109/TPEL.2016.2532386
  15. Darus, R., Pou, J., Konstantinou, G., Ceballos, S., Picas, R., Agelidis, V.G.: A modified voltage balancing algorithm for the modular multilevel converter: evaluation for staircase and phase-disposition PWM. IEEE Trans. Power Electron. 30(8), 4119-4127 (2015) https://doi.org/10.1109/TPEL.2014.2359005
  16. Hu, P., Jiang, D.: A level-increased nearest level modulation method for modular multilevel converters. IEEE Trans. Power Electron. 30(4), 1836-1842 (2015) https://doi.org/10.1109/TPEL.2014.2325875
  17. Fan, S., Zhang, K., Xiong, J., Xue, Y.: An improved control system for modular multilevel converters with new modulation strategy and voltage balancing control. IEEE Trans. Power Electron. 30(1), 358-371 (2015) https://doi.org/10.1109/TPEL.2014.2304969
  18. Konstantinou,G. S., Agelidis,V. G.: Performance evaluation of half-bridge cascaded multilevel converters operated with multicarrier sinusoidal PWM techniques. In: Proc. IEEE 4th Conf. Ind. Electron. and App., 2009, pp. 3399-3404.
  19. Hassanpoor,A., Norrga,S., Nee,H. P., Angquist,L.: Evaluation of different carrier-based PWM methods for modular multilevel converters for HVDC application,In: Proc. IEEE 38th Annu. Conf. Ind. Electron. Soc., 2012, pp. 388-393.
  20. Hagiwara, M., Akagi, H.: Control and experiment of pulse width-modulated modular multilevel converters. IEEE Trans. Power Electron. 24(7), 1737-1746 (2009) https://doi.org/10.1109/tpel.2009.2014236
  21. Qin, J., Saeedifard, M.: Reduced switching-frequency voltage balancing strategies for modular multilevel HVDC converters. IEEE Trans. Power Del. 28(4), 2403-2410 (2013) https://doi.org/10.1109/TPWRD.2013.2271615
  22. Deng, F., Chen, Z.: A control method for voltage balancing in modular multilevel converters. IEEE Trans. Power Electron. 29(1), 66-76 (2014) https://doi.org/10.1109/TPEL.2013.2251426