Acknowledgement
This work was supported by the Nature Science Foundation Key Project of Chongqing in China under Grant cstc2019jcyj-zdxmX0005.
References
- Iwamura, N., Laska, T.: IGBT history, state-of-the-art, and future prospects. IEEE Trans. Electron Devices 64(3), 741-752 (2017) https://doi.org/10.1109/TED.2017.2654599
- Zorn, C., Kaminski, N.: Temperature-humidity-bias testing on insulated-gate bipolartransistor modules-failure modes and acceleration due to high voltage. IET Power Electron. 8(12), 2329-2335 (2015) https://doi.org/10.1049/iet-pel.2015.0031
- Yang, S., Bryant, A., Mawby, P., Xiang, D., Ran, L., Tavner, P.: An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441-1451 (2011) https://doi.org/10.1109/TIA.2011.2124436
- Ciappa, M.: Selected failure mechanisms of modern power modules. Microelectron. Rel. 42(45), 653-667 (2002) https://doi.org/10.1016/S0026-2714(02)00042-2
- Wang, H., Liserre, M., Blaabjerg, F.: Toward reliable power electronics: challenges design tools and opportunities. IEEE Ind. Electron. Mag. 7(2), 17-26 (2013) https://doi.org/10.1109/MIE.2013.2252958
- Avenas, Y., Dupont, L., Khatir, Z.: Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters-a review. IEEE Trans. Power Electron. 27(6), 3081-3092 (2012) https://doi.org/10.1109/TPEL.2011.2178433
- Bahman, A.S., Ma, K., Blaabjerg, F.: A lumped thermal model including thermal coupling and thermal boundary conditions for high-power IGBT modules. IEEE Trans. Power Electron. 33(3), 2518-2530 (2018) https://doi.org/10.1109/TPEL.2017.2694548
- Stella, F., Pellegrino, G., Armando, E., et al.: Online junction temperature estimation of SiC power mosfets through on-state voltage mapping. IEEE Trans. Ind. Appl. 54(4), 3453-3462 (2018) https://doi.org/10.1109/tia.2018.2812710
- Perpina, X., Serviere, J.F., Saiz, J., et al.: Temperature measurement on series resistance and devices in power packs based on on-state voltage drop monitoring at high current. Microelectron. Rel. 46(9-11), 1834-1839 (2006) https://doi.org/10.1016/j.microrel.2006.07.078
- Sathik, M. H. M., Pou, J., Prasanth, S., et al.: Comparison of IGBT junction temperature measurement and estimation methods-a review. Asian Conference on Energy, Power and Transportation Electrifcation, 1-8 (2017)
- Grifo, A., Wang, J., Colombage, K., et al.: Real-time measurement of temperature sensitive electrical parameters in SiC power MOSFETs. IEEE Trans. Ind. Electron. 65(3), 2663-2671 (2017) https://doi.org/10.1109/tie.2017.2739687
- Carubelli, S., Khatir, Z.: Experimental validation of a thermal modelling method dedicated to multichip power modules in operating conditions. Microelectron. J. 34(12), 1143-1151 (2003) https://doi.org/10.1016/S0026-2692(03)00205-2
- Niu, H., Lorenz, R.D.: Evaluating different implementations of online junction temperature sensing for switching power semiconductors. IEEE Trans. Ind. Appl. 53(1), 391-401 (2016) https://doi.org/10.1109/TIA.2016.2614773
- Elefendi, M.A., Johnson, C.M.: Application of Kalman filter to estimate junction temperature in IGBT power modules. IEEE Trans. Power Electron. 31(2), 1576-1587 (2015) https://doi.org/10.1109/TPEL.2015.2418711
- Li, H., Xiang, D., Yang, X., et al.: Compressed sensing method for IGBT high-speed switching time on-line monitoring. IEEE Trans. Ind. Electron. 66(4), 3185-3195 (2018) https://doi.org/10.1109/tie.2018.2847647
- Ye, J., Yang, K., Ye, H., et al.: A fast electro-thermal model of traction inverters for electrifed vehicles. IEEE Trans. Power Electron. 32(5), 3920-3934 (2016) https://doi.org/10.1109/TPEL.2016.2585526
- Cottet, D., Drofenik, U., Meyer, J. M.: A systematic design approach to thermal-electrical power electronics integration. Proceedings of Electron. Syst.-Integr. Technol. Conf., September, pp 219-224 (2008)
- Kojima, T., Yamada, Y., Nishibe, Y., et al.: Novel RC compact thermal model of HV inverter module for electro-thermal coupling simulation. Proceedings of Power Conversion Conference, pp 1025-1029 (2007)
- Qian, C., Gheitaghy, A.M., Fan, J., et al.: Thermal management on IGBT power electronic devices and modules. IEEE Access 6, 12868-12884 (2018) https://doi.org/10.1109/access.2018.2793300
- Fuji IGBT Modules Application Manual, [online] www.fujielectric.com (2004)
- Xu, D., Lu, H., Huang, L., et al.: Power loss and junction temperature analysis of power semiconductor devices. IEEE Trans. Ind. Appl. 38(5), 1426-1431 (2002) https://doi.org/10.1109/TIA.2002.802995
- Wintrich, A., Nicolai, U., Tursky, W., Reimann, T.: Application Manual Power Semiconductors. Semikron, Nuremberg (2011)
- Zhou, Z., Kanniche, M.S., Butcup, S.G., et al.: High-speed electro-thermal simulation model of inverter power modules for hybrid vehicles. IET Electr. Power Appl. 5(8), 636-643 (2011) https://doi.org/10.1049/iet-epa.2011.0048
- Zhang, Y., Wang, H., Wang, Z., et al.: Computational-efficient thermal estimation for IGBT modules under periodic power loss profles in modular multilevel converters. IEEE Trans. Ind. Appl. 55(5), 4984-4992 (2019) https://doi.org/10.1109/tia.2019.2925590
- Zhang, Y., Wang, H., Wang, Z., et al.: A simplification method for power device thermal modeling with quantitative error analysis. IEEE J Emerg Sel Topics Power Electron 7(3), 1649-1658 (2019) https://doi.org/10.1109/jestpe.2019.2916575
- Liu, X., Li, L., Das, D., Naqvi, I.H., Pecht, M.G.: Online degradation state assessment methodology for multi-mode failures of insulated gate bipolar transistor. IEEE Access 8, 69471-69481 (2020) https://doi.org/10.1109/access.2020.2984385
- Saha, B., Celaya, J. R., Wysocki, P. F., Goebel, K. F.: Towards prognostics for electronics components. Proceedings of IEEE Aerospace Conference, pp 1-7 (2009)
- Hanif, A., Yu, Y., DeVoto, D., Khan, F.: A comprehensive review toward the state-of-the-art in failure and lifetime predictions of power electronic devices. IEEE Trans. Power Electron. 34(5), 4729-4746 (2018) https://doi.org/10.1109/tpel.2018.2860587
- Wang, H., Liserre, M., Blaabjerg, F., et al.: Transitioning to physics-of-failure as a reliability driver in power electronics. IEEE J Emerg Sel Topics Power Electron 2(1), 97-114 (2013) https://doi.org/10.1109/JESTPE.2013.2290282
- Held, M., Jacob, P., Nicoletti, G., et al.: Fast power cycling test of IGBT modules in traction application. Proceedings of 1997 International Conference on Power Electronics and Drive Systems, pp 425-430 (1997)
- Kovacevic, I. F., Drofenik. U., Kolar, J. W.: New physical model for lifetime estimation of power modules. International Power Electronics Conference-ECCE ASIA, 2106-2114 (2010)
- Zhou, Z., Khanniche, M. S., Igic, P., Kong, S. T., Towers, M., Mawby, P. A.: A fast power loss calculation method for long real time thermal simulation of IGBT modules for a three-phase inverter system. European Conference on Power Electronics and Applications, 9 (2005)
- Drofenik, U., Kolar, J.W.: A general scheme for calculating switching and conduction losses of power semiconductors in numerical circuit simulations of power electronic systems. Proc. Int. Power Electronics Conf., 1-7 (2005)
- Li, G., Du, X., Sun, P., et al.: Numerical IGBT Junction temperature calculation method for lifetime estimation of power semiconductors in the wind power converters. Proc. IEEE Int'l Power Electronics Application Conf. and Exposition, 49-55 (2015)
- Shen, Z., Dinavahi, V.: Real-time device-level transient electrothermal model for modular multilevel converter on FPGA. IEEE Trans. Power Electron. 31(9), 6155-6168 (2015) https://doi.org/10.1109/TPEL.2015.2503281
- Anurag, A., Yang, Y., Blaabjerg, F.: Thermal performance and reliability analysis of single-phase PV inverters with reactive power injection outside feed-in operating hours. IEEE J Emerg Sel Topics Power Electron 3(4), 870-880 (2015) https://doi.org/10.1109/JESTPE.2015.2428432
- 2MBI100VA-060-50. https://www.fujielectric.com/products/semiconductor/model/igbt
- R. S. Varga, Matrix iterative analysis. Springer (2009)
- Fuji IGBT Simulator, [Online] https://www.fujielectric.com/products/semicon-ductor/model/igbt/simulation/index.html
- Ma K (2015) Electro-thermal model of power semiconductors dedicated for both case and junction temperature estimation. In: Power Electronics for the Next Generation Wind Turbine System, Cham, Switzerland: Springer, pp 139-143
- Isidoril, A., Rossi, F.M., Blaabjerg, F., Ma, K.: Thermal loading and reliability of 10-mw multilevel wind power converter at different wind roughness classes. IEEE Trans. Ind. Appl. 50(1), 484-494 (2014) https://doi.org/10.1109/TIA.2013.2269311
- Fuji Electric. www.fujielectric.com Fuji IGBT modules application manual[Online].2013 [Updated: January, 2017]. https://www.fujielectric.com/products/semiconductor/model/igbt/application/box/doc/pdf/REH984c/REH984c.pdf.
- Gerstenmair, Y. C., Wachutka, G.: Calculation of the temperature development in electronic systems by convolution integrals, 16th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 50-59 (2000)
- Yang, Y., Master, R., Tosaya, E., Touzelbaev, M.: Transient frequency-domain thermal measurements with applications to electronic packaging. IEEE Trans Compon Packag Manuf Technol 2(3), 448-456 (2012) https://doi.org/10.1109/TCPMT.2010.2100712
- Ma, K., He, N., Liserre, M., Blaabjerg, F.: Frequency-domain thermal modeling and characterization of power semiconductor devices. IEEE Trans. Power Electron. 31(10), 7183-7193 (2016) https://doi.org/10.1109/TPEL.2015.2509506
- Reigosa, P.D., Wang, H., Yang, Y., et al.: Prediction of bond wire fatigue of IGBTs in a PV inverter under a long-term operation. IEEE Trans. Power Electron. 31(10), 7171-7182 (2016) https://doi.org/10.1109/TPEL.2015.2509643
- Datasheet optris CTlaser LT. https://www.optris.global/optris-ctlaser-lt?fle=tl_fles/pdf/Downloads/High%2520Performance%2520Series/datasheet-optris-ctlaser-lt.pdf.
- Wu, R., Wang, H., Pedersen, K.B., Ma, K., Ghimire, P., Iannuzzo, F., Blaabjerg, F.: A temperature-dependent thermal model of IGBT modules suitable for circuit-level simulations. IEEE Trans. Ind. Appl. 52(4), 3306-3314 (2016) https://doi.org/10.1109/TIA.2016.2540614
- Xiang, L., Ran Tavner, P., Bryant, A., et al.: Monitoring solder fatigue in a power module using case-above-ambient temperature rise. IEEE Trans. Ind. Appl. 47(6), 2578-2591 (2011) https://doi.org/10.1109/TIA.2011.2168556
- Zhang, J., Du, M., Jing, L., Wei, K., Hurley, W.G.: IGBT junction temperature measurements: inclusive of dynamic thermal parameters. IEEE Trans Device Mater Relib 19(2), 333-340 (2019) https://doi.org/10.1109/TDMR.2019.2910182
- Tian, B., Qiao, W., Wang, Z., Gachovska, T., Hudgins, J.L.: Monitoring IGBT's health condition via junction temperature variations. In: 2014 IEEE Applied Power Electronics Conference and Exposition-APEC, 2550-2555 (2014)
- Schmidt R., Scheuermann U.: Using the chip as a temperature sensor-The influence of steep lateral temperature gradients on the Vce(T)-measurement. Proceedings of the 13th Eur. Conf. Power Electron, pp 1-9 (2009)
- Dupont, L., Avenas, Y., Jeannin, P.-O.: Comparison of junction temperature evaluations in a power IGBT module using an IR camera and three thermosensitive electrical parameters. IEEE Trans. Ind. Appl. 49(4) (2013)
- Ma, K, Blaabjerg, F.: Reliability-cost models for the power switching devices of wind power converters. Proc. IEEE Conf. Power Electronics for Distributed Generation Systems, 820-827 (2012)-APEC, 2550-2555 (2014)