Acknowledgement
This paper is supported by the Training Funded Project of the Beijing Youth Top-Notch Talents of China under Grant 2017000026833ZK22, High-level Teachers in Beijing Municipal Universities in the Period of 13th 5-year Plan under Grant CIT&TCD201804034, National Natural Science Foundation of China under Grant 61703203, and Natural Science Foundation of Jiangsu Province under Grant BK20170812.
References
- Aghalari, A., Shahravi, M.: Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel. Acta Astronaut. 141, 143-157 (2017) https://doi.org/10.1016/j.actaastro.2017.10.010
- Zhou, X.X., Sun, J., Li, H.T., Zeng, F.Q.: PMSM open-phase fault-tolerant control strategy based on four-leg inverter. IEEE Trans. Power Electron. 35(3), 2799-2808 (2020) https://doi.org/10.1109/tpel.2019.2925823
- Zhou, X.X., Su, D.: Precise braking torque control for momentum flywheels based on a singular perturbation analysis. J. Power Electron. 17(4), 953-962 (2017) https://doi.org/10.6113/JPE.2017.17.4.953
- Peng, C., Fan, Y.H., Huang, Z.Y., Han, B.C., Fang, J.C.: Frequency-varying synchronous micro-vibration suppression for a MSFW with application of small-gain theorem. Mech. Syst. Signal Proc. 82, 432-447 (2017) https://doi.org/10.1016/j.ymssp.2016.05.033
- Hutterer, M., Kalteis, G., Schrodl, M.: Redundant unbalance compensation of an active magnetic bearing system. Mech. Syst. Signal Proc. 94, 267-278 (2017) https://doi.org/10.1016/j.ymssp.2017.02.040
- Feng, J., Liu K., Wei, J.B.: Instantaneous torque control of magnetically suspended reaction flywheel. In: 3rd International CPESE 2016, Kitakyushu, Japan, vol. 100, pp. 297-306 (2016)
- Liu, Q., Wang, K., Ren, Y., Peng, P.L., Ma, L.M., Zhao, Y.: Novel repeatable launch locking /unlocking device for magnetically suspended momentum flywheel. Mechatronics 54(16), 16-25 (2018) https://doi.org/10.1016/j.mechatronics.2018.07.002
- Tang, J.Q., Fang, J.C., Ge, S.S.: Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel. Phys. C 483, 178-185 (2012) https://doi.org/10.1016/j.physc.2012.07.007
- Tang, J.Q., Zhao, X.F., Wang, Y., Cui, X.: Adaptive neural network control for rotor's stable suspension of Vernier-gimballing magnetically suspended flywheel. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 233(8), 1017-1029 (2019)
- Li, J.Y., Xiao, K., Liu, K., Hou, E.: Mathematical model of a vernier gimballing momentum wheel supported by magnetic bearings. In: Proc. 13th Int. Symp. Magnetic Bearings, Changsha, pp. 1-9 (2012)
- Xiang, B., Tang, J.Q.: Suspension and titling of vernier-gimballing magnetically suspended flywheel with conical magnetic bearing and Lorentz magnetic bearing. Mechatronics 28, 46-54 (2015) https://doi.org/10.1016/j.mechatronics.2015.04.008
- Ren, Y., Chen, X.C., Cai, Y.W., Zhang, H.J., Xin, C.J., Liu, Q.: Attitude-rate measurement and control integration using magnetically suspended control and sensitive gyroscopes. IEEE Trans. Ind. Electron. 65(6), 4921-4932 (2017) https://doi.org/10.1109/tie.2017.2772161
- Liu, Q., Zhao, Y., Cao, J.S., Ren, Y.: Lorentz magnetic bearing for novel vernier gimballing magnetically suspended flywheel. J. Astronaut. 38(5), 481-489 (2017)
- Xu, G.F., Cai, Y.W., Ren, Y., Xin, C.J., Liu, Q.: Application of a new Lorentz Force-type tilting control magnetic bearing in a magnetically suspended control sensitive gyroscope with cross-sliding mode control. Trans. Jpn. Soc. Aeronaut. Space Sci. 61(1), 40-47 (2018) https://doi.org/10.2322/tjsass.61.40
- Zhao, Y., Liu, Q., Ma, L.M., Wang, K.: Novel Lorentz Force-type magnetic bearing with flux congregating rings for magnetically suspended gyrowheel. IEEE Trans. Magn. 55(12), 1-8 (2019)
- Murakami, C., Ohkami, Y., Okamoto, O., Nakajima, A., Inoue, M., Tsuchiya, J.: A new type of magnetic gimballed momentum wheel and its application to attitude control in space. Acta Astronaut. 11(9), 613-619 (1984) https://doi.org/10.1016/0094-5765(84)90036-5
- Han, B.C., Zheng, S.Q., Wang, X., Yuan, Q.: Integral design and analysis of passive magnetic bearing and active radial magnetic bearing for agile satellite application. IEEE Trans. Magn. 48(6), 1959-1966 (2012) https://doi.org/10.1109/TMAG.2011.2180731
- Seddon, J., Pechev, A.: 3-D wheel: a single actuator providing three-axis control of satellites. J. Spacecr. Rockets. 49(3), 553-556 (2012) https://doi.org/10.2514/1.A32039
- Wen, T., Fang, J.C.: A feedback linearization control for the nonlinear 5-DOF flywheel suspended by the permanent magnet biased hybrid magnetic bearings. Acta Astronaut. 79, 131-139 (2012) https://doi.org/10.1016/j.actaastro.2012.04.017
- Tang, J.Q., Sun, J.J., Fang, J.C., Ge, S.S.: Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel. J. Magn. Magn. Mater. 329, 153-164 (2013) https://doi.org/10.1016/j.jmmm.2012.10.006
- Jin, Z.J., Sun, X.D., Cai, Y.F., Zhu, J.G., Lei, G., Guo, Y.G.: Comprehensive sensitivity and cross-factor variance analysis-based multi-objective design optimization of a 3-DOF hybrid magnetic bearing. IEEE Trans. Magn. (2020). https://doi.org/10.1109/TMAG.2020.3005446
- Diao, K.F., Sun, X.D., Lei, G., Guo, Y.G., Zhu, J.G.: Multiobjective system level optimization method for switched reluctance motor drive systems using finite-element model. IEEE Trans. Ind. Electron. 67(12), 10055-10064 (2020) https://doi.org/10.1109/tie.2019.2962483
- Sun, X.D., Shi, Z., Lei, G., Guo, Y.G., Zhu, J.G.: Multi-objective design optimization of an IPMSM based on multilevel strategy. IEEE Trans. Ind. Electron. 99, 1-1 (2020)
- Kurita, N., Ishikawa, T., Matsunami, M.: Basic design and dynamic analysis of the small-sized flywheel energy storage system-application of Lorentz force type magnetic bearing. In: International Conference on Electrical Machines and Systems, Tokyo, pp. 415-420 (2009)
- Gerlach, B., Ehinger, M., Raue, H.K., Seiler, R.: Digital controller for a gimballing magnetic bearing reaction wheel. AIAA Guid. Navig. Control Conf. Exhib. 8, 6244-6249 (2005)
- Liu, B., Fang, J.C., Liu, G.: Design of a magnetically suspended gyrowheel and analysis of key technologies. Acta Aeronaut. Astronaut. Sin. 32(8), 1478-1487 (2011)
- Zhong, Z.M., Zhou, S.H., Hu, C.Y., You, J.M.: Current harmonic selection for torque ripple suppression based on analytical torque model of PMSMs. J. Power Electron. 20, 971-979 (2020) https://doi.org/10.1007/s43236-020-00093-9
- Li, L.Y., Pan, D.H., Tang, Y.B., Wang, T.C.: Analysis of flat voice coil motor for precision positioning system. In: 2011 International Conference on Electrical Machines and Systems, Beijing, China (2011)
- Lang, A.L., Song, Z.J., He, G.Y., Sang, Y.C.: Profile error evaluation of free-form surface using sequential quadratic programming algorithm. Precis. Eng. 47, 344-352 (2017) https://doi.org/10.1016/j.precisioneng.2016.09.008
- Liu, Q., Wang, K., Ren, Y., Chen, X.C., Ma, L.M., Zhao, Y.: Optimization design of launch locking protective device (LLPD) based on carbon fiber bracket for magnetically suspended flywheel (MSFW). Acta Astronaut. 154, 9-17 (2019) https://doi.org/10.1016/j.actaastro.2018.10.044