과제정보
This work was supported in part by the funding from the National Natural Science Foundation of China under Grant 51907169, the Sichuan Science and Technology Program under Grant 2020YFH0031, the Fundamental Research Funds for the Central Universities under Grant 2682020CX16, and the Star of Science and Technology in Southwest Jiaotong University under Grant 2682021CG018.
참고문헌
- Li, Y., Hu, J., Chen, F., Li, Z., He, Z., Mai, R.: Dual-phase-shift control scheme with current-stress and efficiency optimization for wireless power transfer systems. IEEE Trans. Circuits Syst. I Regul. Pap. 65(9), 3110-3121 (2018) https://doi.org/10.1109/TCSI.2018.2817254
- Li, Y., et al.: Efficiency analysis and optimization control for input-parallel output-series wireless power transfer systems. IEEE Trans. Power Electron. 35(1), 1074-1085 (2020) https://doi.org/10.1109/tpel.2019.2914299
- Li, Y., Xu, Q., Lin, T., Hu, J., He, Z., Mai, R.: Analysis and design of load-independent output current or output voltage of a three-coil wireless power transfer system. IEEE Trans. Transp. Electrif. 4(2), 364-375 (2018) https://doi.org/10.1109/tte.2018.2808698
- Li, Y., Mai, R., Yang, M., He, Z.: Cascaded multi-level inverter based IPT systems for high power applications. J. Power Electron. 15(6), 1508-1516 (2015) https://doi.org/10.6113/JPE.2015.15.6.1508
- Li, Y., Mai, R., Lu, L., He, Z.: Active and reactive currents decom-position-based control of angle and magnitude of current for a parallel multiinverter IPT system. IEEE Trans. Power Electron. 32(2), 1602-1614 (2017) https://doi.org/10.1109/TPEL.2016.2550622
- Ahn, D., Hong, S.: Wireless power transmission with self-regulated output voltage for biomedical implant. IEEE Trans. Ind. Electron. 61(5), 2225-2235 (2014) https://doi.org/10.1109/TIE.2013.2273472
- Si, P., Hu, A.P., Malpas, S., Budgett, D.: A frequency control method for regulating wireless power to implantable devices. IEEE Trans. Biomed. Circuits Syst. 2(1), 22-29 (2008) https://doi.org/10.1109/TBCAS.2008.918284
- Cheng, Z., Lei, Y., Song, K., Zhu, C.: Design and loss analysis of loosely coupled transformer for an underwater high-power inductive power transfer system. IEEE Trans. Magn. 51(7), 8401110 (2015)
- Jang, Y., Jovanovic, M.M.: A contactless electrical energy transmis-sion system for portable-telephone battery chargers. IEEE Trans. Ind. Electron. 50(3), 520-527 (2003) https://doi.org/10.1109/TIE.2003.812472
- Buja, G., Bertoluzzo, M., Mude, K.N.: Design and experimentation of WPT charger for electric city car. IEEE Trans. Ind. Electron. 62(12), 7436-7447 (2015) https://doi.org/10.1109/TIE.2015.2455524
- Wang, C.-S., Stielau, O.H., Covic, G.A.: Design considerations for a contactless electric vehicle battery charger. IEEE Trans. Ind. Electron. 52(5), 1308-1314 (2005) https://doi.org/10.1109/TIE.2005.855672
- Li, S., Li, W., Deng, J., Nguyen, T.D., Mi, C.C.: A double-sided LCC compensation network and its tuning method for wireless power trans-fer. IEEE Trans. Veh. Technol. 64(6), 2261-2273 (2015) https://doi.org/10.1109/TVT.2014.2347006
- Li, Y., et al.: Extension of ZVS region of series-series WPT systems by an auxiliary variable inductor for improving efficiency. IEEE Trans. Power Electron. (2020). https://doi.org/10.1109/TPEL.3042011
- Zhang, W., Wong, S., Tse, C.K., Chen, Q.: Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems. IEEE Trans. Power Electron. 29(1), 191-200 (2014) https://doi.org/10.1109/TPEL.2013.2249112
- Zhong, W., Hui, S.Y.: Reconfigurable wireless power transfer systems with high energy efficiency over wide load range. IEEE Trans. Power Electron. 33(7), 6379-6390 (2018) https://doi.org/10.1109/tpel.2017.2748161
- Li, H., Li, J., Wang, K., Chen, W., Yang, X.: A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling. IEEE Trans. Power Electron. 30(7), 3998-4008 (2015) https://doi.org/10.1109/TPEL.2014.2349534
- Fu, M., Yin, H., Zhu, X., Ma, C.: Analysis and tracking of optimal load in wireless power transfer systems. IEEE Trans. Power Electron. 30(7), 3952-3963 (2015) https://doi.org/10.1109/TPEL.2014.2347071
- Fu, M., Zhang, T., Zhu, X., Luk, P.C., Ma, C.: Compensation of cross-coupling in multiple-receiver wireless power transfer systems. IEEE Trans. Ind. Inf. 12(2), 474-482 (2016) https://doi.org/10.1109/TII.2016.2516906
- Zhang, Y., Lu, T., Zhao, Z., He, F., Chen, K., Yuan, L.: Selective wireless power transfer to multiple loads using receivers of different resonant frequencies. IEEE Trans. Power Electron. 30(11), 6001-6005 (2015) https://doi.org/10.1109/TPEL.2014.2347966
- Liu, W., Chau, K.T., Lee, C.H.T., Jiang, C., Tian, X.: Hybrid frequency pacing for high-order transformed wireless power transfer. IEEE Trans. Power Electron. 36(1), 1157-1170 (2021) https://doi.org/10.1109/tpel.2020.3002986
- Fu, M., Yin, H., Ma, C.: Megahertz multiple-receiver wireless power transfer systems with power flow management and maximum efficiency point tracking. IEEE Trans. Microw. Theory Tech. 65(11), 4285-4293 (2017) https://doi.org/10.1109/TMTT.2017.2689747
- Fu, M., Yin, H., Liu, M., Wang, Y., Ma, C.: A 6.78 MHz multiple-receiver wireless power transfer system with constant output voltage and optimum efficiency. IEEE Trans. Power Electron. 33(6), 5330-5340 (2018) https://doi.org/10.1109/tpel.2017.2726349
- Li, Y., Hu, J., Li, X., et al.: Analysis, design, and experimental verification of a mixed high-order compensations-based WPT system with constant current outputs for driving multistring LEDs. IEEE Trans. Ind. Electron. 67(1), 203-213 (2020) https://doi.org/10.1109/tie.2019.2896255
- Thrimawithana, D.J., Madawala, U.K., Neath, M.: A synchronization technique for bidirectional IPT systems. IEEE Trans. Ind. Electron. 60(1), 301-309 (2013) https://doi.org/10.1109/TIE.2011.2174536
- Madawala, U.K., Thrimawithana, D.J.: A bidirectional inductive power interface for electric vehicles in V2G systems. IEEE Trans. Ind. Electron. 58(10), 4789-4796 (2011) https://doi.org/10.1109/TIE.2011.2114312
- Diekhans, T., Doncker, R.W.D.: A dual-side controlled inductive power transfer system optimized for large coupling factor variations and partial load. IEEE Trans. Power Electron. 30(11), 6320-6328 (2015) https://doi.org/10.1109/TPEL.2015.2393912
- Berger, A., Agostinelli, M., Vesti, S., Oliver, J.A., Cobos, J.A., Huemer, M.: A wireless charging system applying phase-shift and amplitude control to maximize efficiency and extractable power. IEEE Trans. Power Electron. 30(11), 6338-6348 (2015) https://doi.org/10.1109/TPEL.2015.2410216
- Nguyen, B.X., et al.: An efficiency optimization scheme for bidirectional inductive power transfer systems. IEEE Trans. Power Electron. 30(11), 6310-6319 (2015) https://doi.org/10.1109/TPEL.2014.2379676
- Colak, K., Asa, E., Bojarski, M., Czarkowski, D., Onar, O.C.: A novel phase-shift control of semibridgeless active rectifier for wireless power transfer. IEEE Trans. Power Electron. 30(11), 6288-6297 (2015) https://doi.org/10.1109/TPEL.2015.2430832
- Kiani, M., Jow, U.-M., Ghovanloo, M.: Design and optimization of a 3-coil inductive link for efficient wireless power transmission. IEEE Trans. Biomed. Circuits Syst. 5(6), 579-591 (2011) https://doi.org/10.1109/TBCAS.2011.2158431
- Moon, S., Kim, B.-C., Cho, S.-Y., Ahn, C.-H., Moon, G.-W.: Analysis and design of a wireless power transfer system with an intermediate coil for high efficiency. IEEE Trans. Ind. Electron. 61(11), 5861-5870 (2014) https://doi.org/10.1109/TIE.2014.2301762
- Zhong, W.X., Zhang, C., Liu, X., Hui, S.Y.R.: A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance. IEEE Trans. Power Electron. 30(2), 933-942 (2015) https://doi.org/10.1109/TPEL.2014.2312020
- Zhang, J., Yuan, X., Wang, C., He, Y.: Comparative analysis of two coil and three-coil structures for wireless power transfer. IEEE Trans. Power Electron. 32(1), 341-352 (2017) https://doi.org/10.1109/TPEL.2016.2526780
- Surendrakumaran, U., Nachiappan, A.: Performance analysis of wireless power transfer (WPT) through two-coil and three-coil structure. In: 2017 International conference on innovative research in electrical sciences (IICIRES), pp. 1-6 (2017)