DOI QR코드

DOI QR Code

Performance improvement of hybrid renewable energy sources connected to the grid using artificial neural network and sliding mode control

  • Elnozahy, Ahmed (Department of Electrical Engineering, Faculty of Engineering, Assiut University) ;
  • Yousef, Ali M. (Department of Electrical Engineering, Faculty of Engineering, Assiut University) ;
  • Abo‑Elyousr, Farag K. (Department of Electrical Engineering, Faculty of Engineering, Assiut University) ;
  • Mohamed, Moayed (Electrical Department, Faculty of Technology and Education, Sohag University) ;
  • Abdelwahab, Saad A. Mohamed (Electrical Department, Faculty of Technology and Education, Suez University)
  • Received : 2020.06.29
  • Accepted : 2021.03.15
  • Published : 2021.08.20

Abstract

The main purpose of this paper to compare and analyze three types of controllers in the three phases DC-AC inverters in hybrid renewable energy source (HRES) systems. To achieve this, two modern controllers are developed and compared based on sliding mode control (SMC) and artificial neural network techniques. The HRESs comprise photovoltaic (PV), wind turbines, battery storage systems, and transmission lines connected to infinite bus bars via a step-up transformer. The developed controllers at the inverter side utilize both voltage control and current regulation. A DC-DC boost converter is employed to set up a voltage demand at the point of common coupling (PCC). Then, the formulation of an HRES with the developed controllers is presented. The developed controllers are considered to operate under various solar radiations, temperatures, and wind speed loading conditions. The HRESs with the developed controllers are simulated via MATLAB/Simulink to verify the effectiveness of the developed controllers. The obtained results demonstrate that adaptive SMC and artificial ANN control techniques give better results in terms of input power, output power, current, and voltage when compared to classic PI control.

Keywords

References

  1. Lal, D.K., Dash, B.B., Akella, A.K.: Optimization of PV/wind/micro-hydro/diesel hybrid power system in HOMER for the study area. Int J Electr Eng Inf (IJEEI) 3(3), 307 (2011)
  2. De Persis, C., Tesi, P.: Formulas for data-driven control: stabilization, optimality, and robustness. IEEE Trans. Autom. Control 65(3), 909-924 (2020) https://doi.org/10.1109/tac.2019.2959924
  3. Yousef, A.M., Ebeed, M., Abo-Elyousr, F.K., Elnozohy, A., Mohamed, M., Abdelwahab, S.A.M.: Optimization of PID controller for hybrid renewable energy system using adaptive sine cosine algorithm. Int. J. Renew. Energy Res. IJRER 10(2), 670-677 (2020)
  4. Wang, H., Hua, L., Guo, Y., Lu, C.: Control of Z-axis MEMS gyroscope using adaptive fractional order dynamic sliding mode approach. IEEE Access 7, 133008-133016 (2019) https://doi.org/10.1109/access.2019.2938999
  5. Gao, P., Zhang, G., Ouyang, H., Mei, L.: An adaptive super twisting nonlinear fractional order PID sliding mode control of permanent magnet synchronous motor speed regulation system based on extended state observer. IEEE Access 8, 53498-53510 (2020) https://doi.org/10.1109/access.2020.2980390
  6. Xu, S.S., Chen, C., Wu, Z.: Study of nonsingular fast terminal sliding-mode fault-tolerant control. IEEE Trans. Ind. Electron. 62(6), 3906-3913 (2015) https://doi.org/10.1109/TIE.2015.2399397
  7. Zhang, X., Zhou, Z.: Integrated fault estimation and fault tolerant attitude control for rigid spacecraft with multiple actuator faults and saturation. IET Control Theory Appl. 13(15), 2365-2375 (2019) https://doi.org/10.1049/iet-cta.2019.0195
  8. Syafaruddin, E., Karatepe, T.H.: Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions. IET Renew. Power Gener. 3(2), 239-253 (2009) https://doi.org/10.1049/iet-rpg:20080065
  9. H. Khorashadi-Zadeh: Power transformer differential protection scheme based on symmetrical component and artificial neural network. 7th Seminar on neural network applications in electrical engineering, 2004. NEUREL, Belgrade, Serbia, pp. 261-265, (2004)
  10. Voloshin, E. A., Voloshin, A. A., Usachev, S. S., Ententeev, A. R., Maksudov B. T., Livshits, S. A.: Increase of efficiency of relay protection reliability in modes with deep saturation of current transformers using the methodology based on the application of Artificial Neural Networks. 2018 International youth scientific and technical conference relay protection and automation (RPA), Moscow, pp. 1-14, (2018)
  11. Kalaam, R.N., Muyeen, S.M., Al-Durra, A., Hasanien, H.M., Al-Wahedi, K.: Optimisation of controller parameters for grid-tied photovoltaic system at faulty network using artificial neural network-based cuckoo search algorithm. IET Renew. Power Gener. 11(12), 1517-1526 (2017) https://doi.org/10.1049/iet-rpg.2017.0040
  12. Yoo, H., Nguyen, T., Kim, H.: Consensus-based distributed coordination control of hybrid AC/DC microgrids. IEEE Trans. Sustain. Energy 11(2), 629-639 (2020) https://doi.org/10.1109/tste.2019.2899119
  13. Abdelwahab, S.A.M., Abdellatif, W.S.E., Hamada, A.M.: Comparative analysis of the modified perturb and observe with different MPPT techniques for PV grid connected systems. Int. J. Renew. Energy Res. IJRER 10(1), 156-164 (2020)
  14. Ayvaz, E., Kaplan, K., Kuncan, M.: An integrated LSTM neural networks approach to sustainable balanced scorecard-based early warning system. IEEE Access 8, 37958-37966 (2020) https://doi.org/10.1109/access.2020.2973514
  15. Chen, J., Park, J.H., Xu, S.: Stability analysis for neural networks with time-varying delay via improved techniques. IEEE Trans. Cybern. 49(12), 4495-4500 (2019) https://doi.org/10.1109/tcyb.2018.2868136
  16. Yousef, A.M., Ibrahem, H.A., Abo-elyousr, F.K., Mohamed, M.: Sliding mode control for three phase PV grid connected energy system using LCL filter. Minia J Eng. Technol. (MJET) 36(2), 1 (2017)
  17. Zhang, H., Yue, D., Xie, X.: Distributed model predictive control for hybrid energy resource system with large-scale decomposition coordination approach. IEEE Access 4, 9332-9344 (2016) https://doi.org/10.1109/ACCESS.2016.2646066
  18. Lubbad, M. M., El-Amary, N. H., Abdelaziz A. Y.: Sliding mode control for hybrid power sources micro-grid. 2019 21st International middle east power systems conference (MEPCON), Cairo, Egypt, pp. 650-655 (2019)
  19. Qi, G., Chen, A., Chen, J.: Improved control strategy of interlinking converters with synchronous generator characteristic in islanded hybrid AC/DC microgrid. CPSS Trans. Power Electron. Appl. 2(2), 149-158 (2017) https://doi.org/10.24295/CPSSTPEA.2017.00015
  20. Awad H., Abdalfatah, S., Hegazy H., Elkholy E. E.: Hybrid PV/FC system design and simulation. 2019 21st international middle east power systems conference (MEPCON), Cairo, Egypt, pp. 1025-1030 (2019)
  21. Rmili, L., Hamouda, M., Rahmani, S., Fortin, H., Al-Haddad, B.K.: PWM-based integral sliding-mode controller for unity input power factor operation of indirect matrix converter. J. Power Electron. 17(4), 1048-1057 (2017) https://doi.org/10.6113/JPE.2017.17.4.1048
  22. Shan, Y., Hu, J., Chan, K.W., Fu, Q., Guerrero, J.M.: Predictive control of bidirectional DC-DC converters and AC/DC interlinking converters-a new control method for PV-wind-battery microgrids. IEEE Trans. Sustain. Energy 10(4), 1823-1833 (2019) https://doi.org/10.1109/tste.2018.2873390
  23. Elbaset, A.A., Abdelwahab, S.A.M., Ibrahim, H.A., Eid, M.A.E.: Performance analysis of photovoltaic systems with energy storage systems. Renewable and Green Energy. Springer, Berlin (2019)
  24. Pradhan, S., Singh, B., Panigrahi, B.K., Murshid, S.: A composite sliding mode controller for wind power extraction in remotely located solar PV-wind hybrid system. IEEE Trans. Ind. Electron. 66(7), 5321-5331 (2019) https://doi.org/10.1109/tie.2018.2868009
  25. Baghaee, H. R., Mirsalim, M., Gharehpetian G. B., Talebi, H. A.: Decentralized sliding mode control of WG/PV/FC microgrids under unbalanced and nonlinear load conditions for on- and off-grid modes. IEEE Syst J. 12(4):3108-3119, (2018) https://doi.org/10.1109/jsyst.2017.2761792
  26. Alaboudy, A.H.K., Elbaset, A.A., Abdelwahab, S.A.M.: Effect of dc link capacitance on stand-alone PV system operation with fluctuated dc resistive loads. Port. Said Eng. Res. J. 19(1), 121-128 (2015) https://doi.org/10.21608/pserj.2015.36797
  27. Dessouky, S. S., Abdellatif, W. S.E., Abdelwahab S. A. M., Ali M. A.: Maximum power point tracking achieved of DFIG-based wind turbines using perturb and observant method. IEEE international middle-east power systems conference, December 18-20 (2018)
  28. Polinder, H., van der Pijl, F.F.A., de Vilder, G., Tavner, P.J.: Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Trans. Energy Convers. 21(3), 725-733 (2006) https://doi.org/10.1109/TEC.2006.875476
  29. Yousef, A.M., Abo-Elyousr, F.K., Elnozohy, A., Mohamed, M., Abdelwahab, S.A.M.: Fractional order PI control in hybrid renewable power generation system to three phase grid connection. Int. J. Elect. Eng. Inf. 12(3), 1 (2020)
  30. Eid, M. A. E., Elbaset, A. A., Ibrahim H. A., Abdelwahab S. A. M.: Modelling, simulation of MPPT using perturb and observe and incremental conductance techniques for stand-alone PV Systems. 2019 21st international middle east power systems conference, Cairo, Egypt, pp. 429-434 (2019)
  31. Kwonhue C., Huaping L.: Phase-locked loop and synchronization. problem-based learning in communication systems using MATLAB and Simulink, IEEE, pp.135-150 (2016)
  32. Seidi Khorramabadi, S., Bakhshai, A.: Critic-based self-tuning PI structure for active and reactive power control of VSCs in microgrid systems. IEEE Trans. Smart Grid. 6(1), 92-103 (2015) https://doi.org/10.1109/TSG.2014.2354651
  33. Souza de Santana, E., Jesus Fiais Cerqueira, J., Silva Flanklin, T.: Fuzzy and PI controllers in pumping water system using photovoltaic electric generation. IEEE Latin Am. Trans. 12(6), 1049-1054 (2014) https://doi.org/10.1109/TLA.2014.6893999
  34. Yang, C., Jiang, Y., He, W., Na, J., Li, Z., Xu, B.: Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Trans. Ind. Electron. 65(10), 8112-8123 (2018) https://doi.org/10.1109/tie.2018.2803773
  35. Leland, R.P.: Adaptive control of a MEMS gyroscope using Lyapunov methods. IEEE Trans. Control Syst. Technol. 14(2), 278-283 (2006) https://doi.org/10.1109/TCST.2005.860514
  36. Paiva, G. M. D., Pimentel, S. P., Marra, E. G., Alvarenga, B. P. D., Mussetta M., Leva, S.: Intra-day forecasting of building-integrated PV systems for power systems operation using ANN ensemble. 2019 IEEE Milan PowerTech, Milan, Italy, pp. 1-5, (2019)

Cited by

  1. Economic Dispatch Methods for Smart Grid Based on Improved SPEA2 and Improved NSGA2 vol.9, 2021, https://doi.org/10.3389/fenrg.2021.767721
  2. Optimal Economic and Environmental Indices for Hybrid PV/Wind-Based Battery Storage System vol.16, pp.6, 2021, https://doi.org/10.1007/s42835-021-00810-9