DOI QR코드

DOI QR Code

Step-up switched-capacitor multilevel inverter employing multiple inputs with reduced switches

  • Wang, Yaoqiang (School of Electrical Engineering, Zhengzhou University) ;
  • Wang, Zhe (School of Electrical Engineering, Zhengzhou University) ;
  • Liu, Wenjun (School of Electrical Engineering, Zhengzhou University) ;
  • Zhang, Yun (School of Electrical and Information Engineering, Tianjin University) ;
  • Wang, Kewen (School of Electrical Engineering, Zhengzhou University) ;
  • Liang, Jun (School of Electrical Engineering, Zhengzhou University)
  • Received : 2020.09.15
  • Accepted : 2021.03.19
  • Published : 2021.07.20

Abstract

A large device count, weak boosting capability, and DC voltage imbalance are common issues in conventional multilevel inverters. In this paper, a novel multilevel inverter is presented that can generate the desired number of output levels with reduced devices by using new switched-capacitor circuits (SCCs). The two input sources and capacitors in the SCC can be switched in parallel and series modes. In the parallel mode, the capacitor voltage of the SCC is charged to the DC source voltage, which inherently solves the capacitor voltage imbalance issue without any auxiliary circuits. In the series mode, the capacitor can be used as an alternative source, which helps achieve a high voltage gain. The multiple input sources of the SCC make the proposed topology suitable for application in renewable energy generation systems where several DC sources are available. Instead of an H-bridge module, a structure with two half-bridges and two switches is used as a polarity generation circuit at the load terminal. The input sources of two SCCs can be selected as symmetric and asymmetric patterns, which can result in a great number of output voltage levels. The circuit topology, operational principle, modulation strategy, capacitor analysis, and performance comparisons of the inverter are described in this paper. In addition, experimental results verify the feasibility and validity of the inverter.

Keywords

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 51507155, in part by the Youth Key Teacher Project of Henan Higher Educational Institutions under Grant 2019GGJS011, and in part by the Graduate Education Research Project of Zhengzhou University under Grant YJSJY201964.

References

  1. Zhang, Y., Li, J., Li, X., Cao, Y., Sumner, M., Xia, C.: A method for the suppression of fluctuations in the neutral-point potential of a three-level NPC inverter with a capacitor-voltage loop. IEEE Trans. Power Electron. 32(1), 825-836 (2017) https://doi.org/10.1109/TPEL.2016.2536176
  2. Wu, F.J., Feng, F., Duan, J.: Zero-crossing disturbance elimination and spectrum analysis of single-carrier seven-level SPWM. IEEE Trans. Ind. Electron. 62(2), 982-990 (2015) https://doi.org/10.1109/TIE.2014.2355413
  3. Oskuee, M.R.J., Karimi, M., Ravadanegh, S.N., Gharehpetian, G.B.: An innovative scheme of symmetric multilevel voltage source inverter with lower number of circuit devices. IEEE Trans. Ind. Electron. 62(11), 6965-6973 (2015) https://doi.org/10.1109/TIE.2015.2438059
  4. Qin, S., Lei, Y., Ye, Z., Chou, D., Pilawa-Podgurski, R.C.N.: A high-power-density power factor correction front end based on seven-level flying capacitor multilevel converter. IEEE J. Emerg. Sel. Topics Power Electron. 7(3), 1883-1898 (2019) https://doi.org/10.1109/jestpe.2018.2865597
  5. Lei, Y., Barth, C., Qin, S.: A 2 kW, single-phase, 7-level, GaN inverter with anactive energy buffer achieving 216 W/in3 power density and 97.6% peak efficiency. In: IEEE Applied Power Electronics Conference & Exposition, pp. 1512-1519 (2016)
  6. Busquets-Monge, S., et al.: Multibattery-fed neutral-point-clamped DC-AC converter with SoC balancing control to maximize capacity utilization. IEEE Trans. Ind. Electron. 67(1), 16-27 (2020) https://doi.org/10.1109/tie.2019.2896176
  7. Bahrami, A., Narimani, M.: A new five-level T-type nested neutral point clamped (T-NNPC) converter. IEEE Trans. Power Electron. 34(11), 10534-10545 (2019) https://doi.org/10.1109/TPEL.2019.2898419
  8. Zhang, Y., Sun, L.: An efficient control strategy for a five-level inverter comprising flying-capacitor asymmetric H-bridge. IEEE Trans. Ind. Electron. 58(9), 4000-4009 (2011) https://doi.org/10.1109/TIE.2010.2100339
  9. Ben Smida, M., Ben Ammar, F.: Modeling and DBC-PSC-PWM control of a three-phase flying-capacitor stacked multilevel voltage source inverter. IEEE Trans. Ind. Electron. 57(7), 2231-2239 (2010) https://doi.org/10.1109/TIE.2009.2030764
  10. Khoun Jahan, H., Abapour, M., Zare, K.: Switched-capacitor-based single-source cascaded H-bridge multilevel inverter featuring boosting ability. IEEE Trans. Power Electron. 34(2), 1113-1124 (2019) https://doi.org/10.1109/tpel.2018.2830401
  11. Wu, F., Li, X., Feng, F., Gooi, H.B.: Modified cascaded multilevel grid-connected inverter to enhance European efficiency and several extended topologies. IEEE Trans. Ind. Inform. 11(6), 1358-1365 (2015) https://doi.org/10.1109/TII.2015.2486623
  12. Shukla, A., Ghosh, A., Joshi, A.: Control of DC capacitor voltages in diode-clamped multilevel inverter using bidirectional buck-boost choppers. IET Power Electron. 5(9), 1723-1732 (2012) https://doi.org/10.1049/iet-pel.2012.0237
  13. Ceballos, S., et al.: Efficient modulation technique for a four-leg fault-tolerant neutral-point-clamped inverter. IEEE Trans. Ind. Electron. 55(3), 1067-1074 (2008) https://doi.org/10.1109/TIE.2008.917098
  14. Jiang, W., Du, S., Chang, L., Zhang, Y., Zhao, Q.: Hybrid PWM strategy of SVPWM and VSVPWM for NPC three-level voltage-source inverter. IEEE Trans. Power Electron. 25(10), 2607-2619 (2010) https://doi.org/10.1109/TPEL.2010.2041254
  15. Sadigh, A.K., Hosseini, S.H., Sabahi, M., Gharehpetian, G.B.: Double flying capacitor multicell converter based on modified phase-shifted pulsewidth modulation. IEEE Trans. Power Electron. 25(6), 1517-1526 (2010) https://doi.org/10.1109/TPEL.2009.2039147
  16. Khazraei, M., Sepahvand, H., Corzine, K.A., Ferdowsi, M.: Active capacitor voltage balancing in single-phase flying-capacitor multilevel power converters. IEEE Trans. Ind. Electron. 59(2), 769-778 (2012) https://doi.org/10.1109/TIE.2011.2157290
  17. Hinago, Y., Koizumi, H.: A switched-capacitor inverter using series/parallel conversion with inductive load. IEEE Trans. Ind. Electron. 59(2), 878-887 (2012) https://doi.org/10.1109/TIE.2011.2158768
  18. Saeedian, M., Hosseini, S.M., Adabi, J.: Step-up switched-capacitor module for cascaded MLI topologies. IET Power Electron. 11(7), 1286-1296 (2018) https://doi.org/10.1049/iet-pel.2017.0478
  19. He, L., Cheng, C.: A flying-capacitor-clamped five-level inverter based on bridge modular switched-capacitor topology. IEEE Trans. Ind. Electron. 63(12), 7814-7822 (2016) https://doi.org/10.1109/TIE.2016.2607155
  20. Liu, J., Wu, J., Zeng, J., Guo, H.: A novel nine-level inverter employing one voltage source and reduced components as high-frequency AC power source. IEEE Trans. Power Electron. 32(4), 2939-2947 (2017) https://doi.org/10.1109/TPEL.2016.2582206
  21. Sekar, R.M., Nelson Jayakumar, D., Mylsamy, K., Subramaniam, U., Padmanaban, S.: Single phase nine level inverter using single DC source supported by capacitor voltage balancing algorithm. IET Power Electron. 11(14), 2319-2329 (2018) https://doi.org/10.1049/iet-pel.2018.5060
  22. Liu, J., Cheng, K.W.E., Ye, Y.: A cascaded multilevel inverter based on switched-capacitor for high-frequency AC power distribution system. IEEE Trans. Power Electron. 29(8), 4219-4230 (2015) https://doi.org/10.1109/TPEL.2013.2291514
  23. Babaei, E., Gowgani, S.S.: Hybrid multilevel inverter using switched capacitor units. IEEE Trans. Ind. Electron. 61(9), 4614-4621 (2014) https://doi.org/10.1109/TIE.2013.2290769
  24. Ye, Y., Cheng, K.W.E., Liu, J., Ding, K.: A step-up switched-capacitor multilevel inverter with self-voltage balancing. IEEE Trans. Ind. Electron. 61(12), 6672-6680 (2014) https://doi.org/10.1109/TIE.2014.2314052
  25. Kumar, P.R., Kaarthik, R.S., Gopakumar, K., Leon, J.I., Franquelo, L.G.: Seventeen-level inverter formed by cascading flying capacitor and floating capacitor H-bridges. IEEE Trans. Power Electron. 30(7), 3471-3478 (2015) https://doi.org/10.1109/TPEL.2014.2342882
  26. Taghvaie, A., Adabi, J., Rezanejad, M.: A self-balanced step-up multilevel inverter based on switched-capacitor structure. IEEE Trans. Power Electron. 33(1), 199-209 (2018) https://doi.org/10.1109/TPEL.2017.2669377
  27. Barzegarkhoo, R., Moradzadeh, M., Zamiri, E., Madadi Kojabadi, H., Blaabjerg, F.: A new boost switched-capacitor multilevel converter with reduced circuit devices. IEEE Trans. Power Electron. 33(8), 6738-6754 (2018) https://doi.org/10.1109/tpel.2017.2751419
  28. Liu, J., Lin, W., Wu, J., Zeng, J.: Novel nine-level quadruple boost inverter with inductive-load ability. IEEE Trans. Power Electron. 34(5), 4014-4018 (2019) https://doi.org/10.1109/tpel.2018.2873188
  29. Chen, M., Loh, P.C., Yang, Y., Blaabjerg, F.: A six-switch seven-level triple-boost inverter. IEEE Trans. Power Electron. 36(2), 1225-1230 (2021)