DOI QR코드

DOI QR Code

Topology and start-up strategy for DC-DC transformers based on voltage balancing unit

  • Zhang, Jialin (C-EPRI Electric Power Engineering Co., Ltd., NARI Group Corporation) ;
  • Zha, Kunpeng (C-EPRI Electric Power Engineering Co., Ltd., NARI Group Corporation) ;
  • Tang, Xiaojun (School of Electrical Engineering, Xi'an Jiaotong University) ;
  • Yang, Yuefeng (C-EPRI Electric Power Engineering Co., Ltd., NARI Group Corporation) ;
  • Yan, Hui (C-EPRI Electric Power Engineering Co., Ltd., NARI Group Corporation) ;
  • Wen, Fuyue (C-EPRI Electric Power Engineering Co., Ltd., NARI Group Corporation) ;
  • Shi, Mingming (State Grid Jiangsu Electric Power Co., Ltd. Research Institute)
  • Received : 2020.12.08
  • Accepted : 2021.03.30
  • Published : 2021.07.20

Abstract

As a core piece of equipment in DC distribution networks, DC solid-state transformers (DCSSTs) are attracting more and more attention in academia and industry. Due to the limitations in terms of the electrical stress of the switches, the input series output parallel (ISOP) structure is adopted in DCSSTs. This paper proposed an improved DCSST topology based on a voltage balancing unit (VBU). This topology has the advantages of higher power density, reduced weight, and cascaded number without compromising efficiency, cost, or reliability. The working modes, mathematical models, and control strategy are analyzed. In addition, a start-up strategy and a parameter design method are proposed in this paper. Simulation and experimental results verify the correctness and effectiveness of the proposed solution. The proposed DCSST is a practical scheme for the application of DC distribution networks.

Keywords

Acknowledgement

This study was financially supported by the State Grid Corporation of China Science and Technology Project: Research on the key technologies of high efficiency and compact multi-port DC transformer.

References

  1. Liu, J., Shanmei, C., Anwen, S.: A high efficiency two-stage inverter for photovoltaic grid-connected generation systems. J. Power Electron. 17(1), 200-211 (2017) https://doi.org/10.6113/JPE.2017.17.1.200
  2. Katayama, N., Tosaka, S., Yamanaka, T., Hayase, M., Dowaki, K., Kogoshi, S.: New topology for dc-dc converters used in fuel cell-electric double layer capacitor hybrid power source systems for mobile devices. IEEE Trans. Ind. Appl. 52(1), 313-321 (2015) https://doi.org/10.1109/TIA.2015.2464189
  3. Zhang, J., Liu, J., Yang, J., Zhao, N., Wang, Y., Zheng, T.Q.: A modified DC power electronic transformer based on series connection of full-bridge converters. IEEE Trans. Power Electron. 34(3), 2119-2133 (2018) https://doi.org/10.1109/tpel.2018.2842728
  4. Habib, S., Khan, M.M., Abbas, F., Ali, A., Faiz, M.T., Ehsan, F., Tang, H.: Contemporary trends in power electronics converters for charging solutions of electric vehicles. CSEE J. Power Energy Syst. 6(4), 911-929 (2020)
  5. Xu, F., Guo, B., Xu, Z., Tolbert, L.M., Wang, F., Blalock, B.J.: Paralleled three-phase current-source rectifiers for high-efficiency power supply applications. IEEE Trans. Ind. Appl. 20(1), 308-318 (2020)
  6. Dam, D.-H., Lee, H.-H.: Battery-inductor-supercapacitor hybrid energy storage system for DC microgrids. J. Power Electron. 17(1), 200-211 (2017) https://doi.org/10.6113/JPE.2017.17.1.200
  7. Wang, Y., Song, Q., Zhao, B., Li, J., Sun, Q., Liu, W.: Quasi-square-wave modulation of modular multilevel high-frequency DC converter for medium-voltage DC distribution application. IEEE Trans. Power Electron. 33(9), 7480-7495 (2017) https://doi.org/10.1109/tpel.2017.2772833
  8. CIGRE WG C6.31.: Medium Voltage Direct Current (MVDC) Grid Feasibility Study. Technical Brochure no. 793 (2020)
  9. Zhao, B., Song, Q., Liu, W., Sun, Y.: Overview of dual-activebridge isolated bidirectional dc-dc converter for high-frequency-link power-conversion system. IEEE Trans. Power Electron. 29(8), 4091-4106 (2014) https://doi.org/10.1109/TPEL.2013.2289913
  10. Doncker, R.W.A.A.D., Divan, D.M., Kheraluwala, M.H.: A threephase soft-switched high-power-density dc/dc converter for high-power applications. IEEE Trans. Ind. Appl. 27(1), 63-73 (1991) https://doi.org/10.1109/28.67533
  11. Zhu, L.: A novel soft-commutating isolated boost full-bridge ZVS-PWM dc-dc converter for bidirectional high power applications. IEEE Trans. Power Electron. 21(2), 422-429 (2006) https://doi.org/10.1109/TPEL.2005.869730
  12. Inoue, S., Akagi, H.: A bidirectional isolated dc-dc converter as a core circuit of the next-generation medium-voltage power conversion system. IEEE Trans. Power Electron. 22(2), 535-542 (2007) https://doi.org/10.1109/TPEL.2006.889939
  13. Xie, Y., Sun, J., Freudenberg, J.S.: Power flow characterization of a bidirectional Galvanically isolated high-power dc-dc converter over a wide operating range. IEEE Trans. Power Electron. 25(1), 54-66 (2010) https://doi.org/10.1109/TPEL.2009.2024151
  14. Zhao, B., Song, Q., Li, J., Liu, W., Liu, G., Zhao, Y.: High-frequency-link dc transformer based on switched capacitor for medium-voltage dc power distribution application. IEEE Trans. Power Electron. 31(7), 4766-4777 (2016) https://doi.org/10.1109/TPEL.2015.2483543
  15. Wang, Y., Song, Q., Sun, Q., Zhao, B., Li, J., Liu, W.: Multilevel MVDC link strategy of high-frequency-link DC transformer based on switched capacitor for MVDC power distribution. IEEE Trans. Ind. Electron. 64(4), 2829-2835 (2017) https://doi.org/10.1109/TIE.2016.2643622
  16. Bai, H., Mi, C.: Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC-DC converters using novel dual-phase-shift control. IEEE Trans. Power Electron. 23(6), 2905-2914 (2008) https://doi.org/10.1109/TPEL.2008.2005103
  17. Bai, H., Nie, Z., Mi, C.: Experimental comparison of traditional phase-shift, dual-phase-shift, and model-based control of isolated bidirectional dc-dc converters. IEEE Trans. Power Electron. 25(6), 1444-1449 (2010) https://doi.org/10.1109/TPEL.2009.2039648
  18. Krismer, F., Kolar, J.W.: Efficiency-optimized high-current dual active bridge converter for automotive applications. IEEE Trans. Ind. Electron. 59(7), 2745-2760 (2012) https://doi.org/10.1109/TIE.2011.2112312
  19. Jain, A.K., Ayyanar, R.: PWM control of dual active bridge: comprehensive analysis and experimental verification. IEEE Trans. Power Electron. 26(4), 1215-1227 (2011) https://doi.org/10.1109/TPEL.2010.2070519
  20. Wu, K., Silva, C.W., Dunford, W.G.: Stability analysis of isolated bidirectional dual active full-bridge dc-dc converter with triple phaseshift control. IEEE Trans. Power Electron. 27(4), 2007-2017 (2012) https://doi.org/10.1109/TPEL.2011.2167243
  21. Shi, H., Wen, H., Chen, J., Hu, Y., Jiang, L., Chen, G., Ma, J.: Minimum-backflow-power scheme of DAB-based solid-state transformer with extended-phase-shift control. IEEE Trans. Ind. Appl. 54(4), 3483-3496 (2018) https://doi.org/10.1109/tia.2018.2819120
  22. Zhao, B., Yu, Q., Sun, W.: Extended-phase-shift control of isolated bidirectional dc-dc converter for power distribution in microgrid. IEEE Trans. Power Electron. 27(11), 4667-4680 (2012) https://doi.org/10.1109/TPEL.2011.2180928
  23. Li, X., Bhat, A.K.: Analysis and design of high-frequency isolated dual-bridge series resonant dc/dc converter. IEEE Trans. Power Electron. 25(4), 850-862 (2010) https://doi.org/10.1109/TPEL.2009.2034662
  24. Tian, S., Lee, F.C., Li, Q.: A simplified equivalent circuit model of series resonant converter. IEEE Trans. Power Electron. 31(5), 3922-3931 (2015) https://doi.org/10.1109/TPEL.2015.2464351
  25. Zhang, J., Liu, J., Yang, J., Zhao, N., Wang, Y., Zheng, T.Q.: An LLC-LC type bidirectional control strategy for an LLC resonant converter in power electronic traction transformer. IEEE Trans. Ind. Electron. 65(11), 8595-8604 (2018) https://doi.org/10.1109/TIE.2018.2808917
  26. Chen, Q., Wang, J., Ji, Y.: Control scheme of bidirectional LLC resonant DC-DC transformer for soft start and power conversion. Trans. China Electr. Soc. 29(8), 180-186 (2014). (in Chinese)
  27. Jiang, T., Zhang, J., Wu, X., Sheng, K., Wang, Y.: A bidirectional LLC resonant converter with automatic forward and backward mode transition. IEEE Trans. Power Electron. 30(2), 757-770 (2014) https://doi.org/10.1109/TPEL.2014.2307329
  28. Shi, L., Liu, B., Duan, S.: Current sharing method based on optimal phase shift control for interleaved three-phase half-bridge LLC converter with floating y-connection. J. Power Electron. 19(4), 934-943 (2019) https://doi.org/10.6113/JPE.2019.19.4.934
  29. Yeon, C., Kim, J., Park, M., Lee, I., Moon, G.: Improving the light-load regulation capability of LLC series resonant converter using impedance analysis. IEEE Trans. Power Electron. 32(9), 7056-7067 (2017) https://doi.org/10.1109/TPEL.2016.2629517
  30. Kim, C., Baek, J., Lee, J.: High-efficiency single-stage LLC resonant converter for wide-input-voltage range. IEEE Trans. Power Electron. 33(9), 7832-7840 (2018) https://doi.org/10.1109/tpel.2017.2772443
  31. Martins, L.F., Stone, D., Foster, M.: Modelling of phase-shift modulated bidirectional CLLC resonant converter. IET Power Electron. 13(12), 2628-2637 (2020) https://doi.org/10.1049/iet-pel.2018.5672
  32. Zou, S., Lu, J., Mallik, A., Khaligh, A.: Bi-directional CLLC converter with synchronous rectification for plug-in electric vehicles. IEEE Trans. Ind. Appl. 54(2), 998-1005 (2018) https://doi.org/10.1109/TIA.2017.2773430
  33. Zong, S., Fan, G., Yang, X.: Double voltage rectification modulation for bidirectional DC/DC resonant converters for wide voltage range operation. IEEE Trans. Power Electron. 34(7), 6510-6521 (2019) https://doi.org/10.1109/tpel.2018.2875816