DOI QR코드

DOI QR Code

LCL resonant current depression control strategy against pulse width modulated harmonic voltage under low switching frequency

  • Ma, Zhijun (School of Electrical Engineering, Xi'an Jiaotong University) ;
  • Zhou, Linyuan (School of Electrical Engineering, Xi'an Jiaotong University) ;
  • Liu, Jinjun (School of Electrical Engineering, Xi'an Jiaotong University) ;
  • Zhou, Sizhan (School of Electrical Engineering, Xi'an Jiaotong University)
  • Received : 2020.08.19
  • Accepted : 2020.11.20
  • Published : 2021.02.20

Abstract

The LCL filter is widely used in grid connected converters for good harmonic mitigation performance. With pulse width modulation strategy, converter terminal voltage contains various sideband harmonic components together with expected components corresponding to the modulation wave, especially under a low switching frequency. Considerable resonant current can be generated if the undesired sideband harmonic voltage is located around the LCL resonant frequency. With the background of a medium voltage three-level wind power converter, where the switching frequency is as low as 1.5 kHz, a resonant current depression strategy is proposed against undesired sideband harmonic voltage under low switching frequency. Additional compensators are adopted in the converter current loop. Depending on the system mathematical model, two solutions, a Butterworth low pass filter and a notch filter, based on phase compensation and amplitude compensation, are proposed in this paper. It is shown that the Butterworth low pass filter exhibits better resonant current depression performance, while the notch filter performance is better in terms of system stability. Simulation and experimental results validated the proposed control method.

Keywords

References

  1. Beres, R.N., Wang, X., Liserre, M., Blaabjerg, F., Leth Bak, C.: A review of passive power filters for three-phase grid-connected voltage-source converters. IEEE Trans. Emerg. Selected Topics Power Electron. 4(1):54-69 (2016) https://doi.org/10.1109/JESTPE.2015.2507203
  2. He, J., Li, Y.: Generalized closed-loop control schemes with embedded virtual impedances for voltage source converters with LC or LCL filters. IEEE Trans. Power Electron. 27(4), 1850-1861 (2012) https://doi.org/10.1109/TPEL.2011.2168427
  3. Pan, D., Ruan, X., Bao, C., Li, W., Wang, X.: Optimized controller design for LCL-type grid-connected inverter to achieve high robustness against grid-impedance variation. IEEE Trans. Ind. Electron. 62(3), 1537-1547 (2015) https://doi.org/10.1109/TIE.2014.2341584
  4. Pan, D., Ruan, X., Bao, C., Li, W., Wang, X.: Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter. IEEE Trans. Power Electron. 29(7), 3414-3427 (2014) https://doi.org/10.1109/TPEL.2013.2279206
  5. Li, X., Wu, X., Geng, Y., Yuan, X.: Wide damping region for LCL-type grid-connected inverter with an improved capacitor-current-feedback method. IEEE Trans. Power Electron. 30(9), 5247-5259 (2015) https://doi.org/10.1109/TPEL.2014.2364897
  6. Wang, X., Blaabjerg, F., Loh, P.C.: Virtual RC damping of LCL-filtered voltage source converters with extended selective harmonic compensation. IEEE Trans. Power Electron. 30(9), 4726-4737 (2015) https://doi.org/10.1109/TPEL.2014.2361853
  7. He, Y., Wang, X., Ruan, X., Pan, D., Xu, X., Liu, F.: Capacitorcurrent proportional-integral positive feedback active damping for LCL-type grid-connected inverter to achieve high robustness against grid impedance variation. IEEE Trans. Power Electron. 34(12), 12423-12436 (2019) https://doi.org/10.1109/tpel.2019.2906217
  8. Wang, X., Bao, C., Ruan, X., Li, W., Pan D.: Design considerations of digitally controlled LCL-filtered inverter with capacitor-current-feedback active damping. IEEE J. Emerg. Sel. Top. Power Electron. 2(4): 972-984 (2014) https://doi.org/10.1109/JESTPE.2014.2350262
  9. Wagner, M., Barth, T., Alvarez, R., Ditmanson, C., Bernet, S.: Discrete-time active damping of LCL-resonance by proportional capacitor current feedback. IEEE Trans. Ind. Appl., 50(6), 3911-3920 (2014) https://doi.org/10.1109/TIA.2014.2313661
  10. Dannehl, J., Funchs, F.W., Hansen, S., Thogersen, P.B.: Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters. IEEE Trans. Ind. Appl., 46(4), 1509-1517 (2010) https://doi.org/10.1109/TIA.2010.2049974
  11. Pena-Alzola R., Liseerre, M., Blaabjerg, F., Ssbastian, R., Dannehl, J., Fuchs, F.W.: Systematic design of the lead-lag network method for active damping in LCL-filter based three phase converters. IEEE Trans. Ind. Inf., 10(1), 43-52 (2014) https://doi.org/10.1109/TII.2013.2263506
  12. Zhen, X., Loh, P.C., Wang, X., Blaabjerg, F., Tang, Y.: Highly accurate derivatives for LCL-filtered grid converter with capacitor voltage active damping. IEEE Trans. Power Electron. 31(5), 3612-3625 (2016) https://doi.org/10.1109/TPEL.2015.2467313
  13. Pan, D., Ruan, X., Wang, X.: Direct realization of digital differentiators in discrete domain for active damping of LCL-type grid-connected inverter. IEEE Trans. Power Electron. 33(10), 8461-8473 (2018) https://doi.org/10.1109/tpel.2017.2780174
  14. Xu, J., Xie, S., Tang, T.: Active damping-based control for grid-connected LCL-filtered inverter with injected grid current feedback only. IEEE Trans. Ind. Electron. 61(9), 4746-4758 (2014) https://doi.org/10.1109/TIE.2013.2290771
  15. Liu, T., Liu, Z., Liu, J., Liu, Z.: A study of virtual resistor-based active damping alternatives for LCL resonance in grid-connected voltage source inverters. IEEE Trans. Power Electron. 35(1), 247-262 (2020) https://doi.org/10.1109/tpel.2019.2911163
  16. Wang, X., Blaabjerg, F., Loh, P.C.: Grid-current-feedback active damping for LCL resonance in grid-connected voltage-source converters. IEEE Trans. Power Electron. 31(1), 213-223 (2016) https://doi.org/10.1109/TPEL.2015.2411851
  17. Xin, Z., Wang, X., Loh, P.C., Blaabjerg, F.: Grid-current-feedback control for LCL-filtered grid converters with enhanced stability. IEEE Trans. Power Electron. 32(4), 3216-3228 (2017) https://doi.org/10.1109/TPEL.2016.2580543
  18. R.-Perez, J., Bueno, E.J., P.-Alzola, R., R.-Cabero, A.: All-pass-filter-based active damping for VSCs with LCL filters connected to weak grids. IEEE Trans. Power Electron., 33(11), 9890-9901 (2018) https://doi.org/10.1109/tpel.2017.2789218
  19. Yao, W., Yang, Y., Zhang, X., Blaabjerg, F., Loh, P.C.: Design and analysis of robust active damping for LCL filters using digital notch filters. IEEE Trans. Power Electron., 32(3), 2360-2375 (2017) https://doi.org/10.1109/TPEL.2016.2565598
  20. Dannehl, J., Liserre, M., Fuchs, F.W.: Filter-based active damping of voltage source converters with LCL filter. IEEE Trans. Ind. Electron., 58(8), 3623-3622 (2011) https://doi.org/10.1109/TIE.2010.2081952
  21. Tang, Y., Loh, P.C., Wang, P., Choo, F.H., Gao, F.: Exploring inherent damping characteristic of LCL-filters for three-phase grid-connected voltage source inverters. IEEE Trans. Power Electron. 27(3), 1433-1443 (2012) https://doi.org/10.1109/TPEL.2011.2162342
  22. Chen, H.-C., Cheng, P.T., Wang, X., Blaabjerg, F.: A passivity-based stability analysis of the active damping technique in the offshore wind farm applications. IEEE Trans. Ind. Appl. 54(5), 5074-5082 (2018) https://doi.org/10.1109/tia.2018.2853044
  23. R.-Diza, E., Freijedo, F.D., Vasquez, J.C., Guerrero, J.M.: Analysis and comparison of notch filter and capacitor voltage feedforward active damping techniques for LCL Grid-connected converters. IEEE Trans. Power Electron., 34(4), 3958-3972 (2019) https://doi.org/10.1109/tpel.2018.2856634
  24. Aapro, A., Messo, T., Roinila, T., Suntio, T.: Effect of active damping on output impedance of three-phase grid-connected converter. IEEE Trans. Ind. Appl., 64(9), 7532-7541 (2019)
  25. Yoon, C., Bai, H., Beres, R.N., Wang, X., Leth Bak C., Blaabjerg, F.: Harmonic stability assessment for multiparalleled, grid-connected inverters. IEEE Trans. Sustainable Energy, 64(9), 1388-1397 (2016)
  26. Harnefors, L., Finger, R., Wang, X., Bai, H., Blaabjerg, F.: VSC Input-admittance modeling and analysis above the nyquist frequency for passivity-based stability assessment. IEEE Trans. Ind. Electron., 65(8), 6362-6370 (2017) https://doi.org/10.1109/tie.2017.2787592
  27. Sadabadi, M.S., Haddadi, A., Karimi, H., Karimi, A.: A Robust active damping control strategy for an LCL-based grid-connected DG Unit. IEEE Trans. Ind. Electron., 64(10), 8055-8065 (2017) https://doi.org/10.1109/TIE.2017.2696501
  28. Hedayati, M.H., B., A.A., John, V.: Common-mode and differential-mode active damping for PWM rectifiers. IEEE Trans. Power Electron., 29(6), 3188-3200 (2017) https://doi.org/10.1109/TPEL.2013.2274102
  29. Wang, B., Xu, Y., Shen, Z., Zou, J., Li, C., Liu, H.: Current control of grid-connected inverter with LCL filter based on extended-state observer estimations using single sensor and achieving improved robust observation dynamics. IEEE Trans. Power Electron. 64(7), 5428-5439 (2017)
  30. Errouissi, R., Al-Durra, A.: Design of PI controller together with active damping for grid-tied LCL-filter systems using disturbance-observer-based control approach. IEEE Trans. Ind. Appl., 54(4), 3820-3831 (2018) https://doi.org/10.1109/tia.2018.2823258
  31. Z. Ma, L. Zhou, J. Liu: Proportional capacitor current feedback based active damping control for LCL-filter converters with considerable control delay. In: Proc. IEEE Applied Power Electronic Conference and Exposition, pp. 3110-3114 (2020)
  32. Z. Ma, L. Zhou, J. Liu: Harmonic current depression for medium voltage three-level wind power converter with active damping control. In: Proc. IEEE Applied Power Electronic Conference and Exposition, pp 3271-3275 (2020)