DOI QR코드

DOI QR Code

Finite control set model predictive control integrated with disturbance observer for battery energy storage power conversion system

  • Gao, Ning (Department of Electrical Engineering, Shanghai Maritime University) ;
  • Zhang, Bingtao (Department of Electrical Engineering, Shanghai Maritime University) ;
  • Wu, Weimin (Department of Electrical Engineering, Shanghai Maritime University) ;
  • Blaabjerg, Frede (Department of Energy Technology, Aalborg University)
  • Received : 2020.09.06
  • Accepted : 2020.12.02
  • Published : 2021.02.20

Abstract

A typical battery energy storage system consists of a combination of battery packs and a grid-tied power conversion system. The control algorithm of the power conversion system plays an important role when interfacing the DC energy stored in battery packs with the conventional AC grid to generate an obedient bidirectional power flow. Finite control set model predictive control is believed to be one of the most effective choices for controlling power conversion systems. However, the performance of such a control strategy heavily depends on the accuracy of the predictive model. Parameter mismatch in the model leads to prediction error, which deteriorates the overall power quality performance of the power conversion system. Therefore, this paper studies a robust finite control set model predictive control method based on a discrete disturbance observer to eliminate the negative effects caused by model inaccuracy and uncertainty. The stability issue of the additional observer is discussed from the perspective of closed-loop poles. Parameter scan is performed to provide assistance in designing the feedback matrix. Finally, simulations and experimental results obtained from a downscaled prototype rated at 4.2 kVA are conducted as a validation of the presented control algorithm.

Keywords

Acknowledgement

The research in this paper is supported by the National Natural Science Foundation of China (No. 51907119) and Shanghai Sailing Program (No. 19YF1418700).

References

  1. Nehrir, M.H., Wang, C., Strunz, K., et al.: A review of hybrid renewable/alternative energy systems for electric power generation: configurations, control, and applications. IEEE Trans Sustain Energy 2(4), 392-403 (2011) https://doi.org/10.1109/TSTE.2011.2157540
  2. Setiadi H, Krismanto A U, Mithulananthan N, et al.: Modal interaction of power systems with high penetration of renewable energy and BES systems. Int J Electr Power Energy Syst 97(Apr), 385-395 (2018) https://doi.org/10.1016/j.ijepes.2017.11.021
  3. Zhang, C., Cai, X., Rygg, A., et al.: Sequence domain SISO equivalent models of a grid-tied voltage source converter system for small-signal stability analysis. IEEE Trans. Energy Convers. 33(2), 741-749 (2018) https://doi.org/10.1109/tec.2017.2766217
  4. Bragard, M., Soltau, N., Thomas, S., et al.: The balance of renewable sources and user demands in grids: power electronics for modular battery energy storage systems. IEEE Trans. Power Electron. 25(12), 3049-3056 (2011) https://doi.org/10.1109/TPEL.2010.2085455
  5. IEEE Draft Guide for Design, Operation, and Maintenance of Battery Energy Storage Systems, both Stationary and Mobile, and Applications Integrated with Electric Power Systems. IEEE P2030.2.1/D9.0, February 2019, 1-45 (2019)
  6. Leow, Y., Ooi, C.A., Hamidi, M.N.: Performance EVALUation of grid-connected power conversion systems integrated with real-time battery monitoring in a battery energy storage system. [J] Electr. Eng. 102(3), 245-258 (2020) https://doi.org/10.1007/s00202-019-00865-y
  7. Rastler D M.: Electricity energy storage technology options: a white paper primer on applications, costs and benefits. Electric Power Research Institute. (2010)
  8. Serban, I., Marinescu, C.: Control strategy of three-phase battery energy storage systems for frequency support in microgrids and with uninterrupted supply of local loads. IEEE Trans. Power Electron. 29(9), 5010-5020 (2014) https://doi.org/10.1109/TPEL.2013.2283298
  9. Lei, M., Yang, Z., Wang, Y., et al.: An MPC-based ESS control method for PV power smoothing applications. IEEE Trans. Power Electron. 33(3), 2136-2144 (2018) https://doi.org/10.1109/TPEL.2017.2694448
  10. Kouro, S., Cortes, P., Vargas, R., et al.: Model predictive control-a simple and powerful method to control power converters. IEEE Trans. Industr. Electron. 56(6), 1826-1838 (2009) https://doi.org/10.1109/TIE.2008.2008349
  11. Zhang, Z., Hackl, C.M., Kennel, R.: Computationally efficient DMPC for three-level NPC back-to-back converters in wind turbine systems with PMSG. IEEE Trans. Power Electron. 32(10), 8018-8034 (2017) https://doi.org/10.1109/TPEL.2016.2637081
  12. Gao, N., Chen, X., Wu, W., et al.: Finite control set model predictive control with model parameter correction for power conversion system in battery energy storage applications. IEEJ Trans Elect Electron Eng. 15(7), 1109-1120 (2020) https://doi.org/10.1002/tee.23156
  13. Parvez Akter M, Mekhilef N S, Mei Lin Tan, et al.: Modified model predictive control of a bidirectional AC-DC converter based on lyapunov function for energy storage systems. IEEE Trans Ind Electron 63(2), 704-715 (2016) https://doi.org/10.1109/TIE.2015.2478752
  14. Falkowski, P., Sikorski, A.: Finite control set model predictive control for grid-connected AC-DC converters with LCL filter. IEEE Trans. Industr. Electron. 65(4), 2844-2852 (2018) https://doi.org/10.1109/tie.2017.2750627
  15. Yang, Y., Wen, H., Fan, M., et al.: Fast finite-switching-state model predictive control method without weighting factors for T-type three-level three-phase inverters. IEEE Trans. Industr. Inf. 15(3), 1298-1310 (2019) https://doi.org/10.1109/tii.2018.2815035
  16. Zhang, Z., Li, Z., Kazmierkowski, M.P., et al.: Robust predictive control of three-level NPC back-to-back power converter pmsg wind turbine systems with revised predictions. IEEE Trans. Power Electron. 33(11), 9588-9598 (2018) https://doi.org/10.1109/tpel.2018.2796093
  17. Chen, X., Wu, W., Gao, N., et al.: Finite control set model predictive control for LCL-filtered grid-tied inverter with minimum sensors. IEEE Trans. Industr. Electron. 67(12), 9980-9990 (2020) https://doi.org/10.1109/tie.2019.2962444
  18. Young, H.A., Perez, M.A., Rodriguez, J.: Analysis of finite-control-set model predictive current control with model parameter mismatch in a three-phase inverter. IEEE Trans. Industr. Electron. 63(5), 3100-3107 (2016) https://doi.org/10.1109/TIE.2016.2515072
  19. Wang, J., Wang, F.: Robust sensorless FCS-PCC control for inverter-based induction machine systems with high-order disturbance compensation. J Power Electron. 20, 1222-1231 (2020) https://doi.org/10.1007/s43236-020-00113-8
  20. Zhang, X., Zhang, L., Zhang, Y.: Model predictive current control for PMSM drives with parameter robustness improvement. IEEE Trans. Power Electron. 34(2), 1645-1657 (2019) https://doi.org/10.1109/tpel.2018.2835835
  21. Chen, W., Yang, J., Guo, L., et al.: Disturbance-observer-based control and related methods-an overview. IEEE Trans. Industr. Electron. 63(2), 1083-1095 (2016) https://doi.org/10.1109/TIE.2015.2478397
  22. Li, S., Liu, Z.: Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia. IEEE Trans. Ind. Electron. 56(8), 3050-3059 (2009) https://doi.org/10.1109/TIE.2009.2024655
  23. Liu, H., Li, S.: Speed control for PMSM servo system using predictive functional control and extended state observer. IEEE Trans. Ind. Electron. 59(2), 1171-1183 (2012) https://doi.org/10.1109/TIE.2011.2162217
  24. Sun, B., Gao, Z.: A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter. IEEE Trans. Ind. Electron. 52(5), 1271-1277 (2005) https://doi.org/10.1109/TIE.2005.855679
  25. Errouissi, R., Al-Durra, A.: Design of PI controller together with active damping for grid-tied LCL filter systems using disturbance-observer-based control approach. IEEE Trans. Ind. Appl. 54(4), 3820-3831 (2018) https://doi.org/10.1109/tia.2018.2823258
  26. Yan, L., Wang, F., Dou, M., et al.: Active disturbance-rejection-based speed control in model predictive control for induction machines. IEEE Trans. Industr. Electron. 67(4), 2574-2584 (2020) https://doi.org/10.1109/tie.2019.2912785
  27. Wang, J., Wang, F., Zhang, Z., et al.: Design and implementation of disturbance compensation-based enhanced robust finite control set predictive torque control for induction motor systems. IEEE Trans. Industr. Inf. 13(5), 2645-2656 (2017) https://doi.org/10.1109/TII.2017.2679283
  28. Chung, SeKyo: Phase-locked loop for grid-connected three-phase power generation systems. IEE Proc Electric Power Appl. 147(3), 213-219 (2000) https://doi.org/10.1049/ip-epa:20000328