DOI QR코드

DOI QR Code

Multiple reference frame-based current harmonic control for interior PMSMs considering motional EMF

  • Received : 2021.01.04
  • Accepted : 2021.03.04
  • Published : 2021.06.20

Abstract

For permanent magnet synchronous machines (PMSMs), current harmonics need to be controlled under two kinds of conditions. Under the first condition, the current harmonics caused by the non-sinusoidal back-electromotive force (EMF) and the dead time of inverters should be suppressed. Under the second condition, specific current harmonics should be injected to suppress the torque ripple of motors. Therefore, the accurate control of current harmonics is critical. It has been found that the original multiple reference frame (MRF)-based control algorithm cannot effectively achieve the control of current harmonics at high speeds. For the currents in MRFs, motional EMF was dominant rather than induced EMF at higher speeds. As a result, the original MRF-based control algorithm does not work at high speeds. To solve this problem, this paper proposed a novel MRF-based control algorithm that considers motional EMF. Furthermore, this paper achieved decoupling control of the current harmonics in MRFs for interior PMSMs. With the proposed control algorithm, the current harmonics of interior PMSMs can be controlled at both high and low speeds. Under the influence of non-sinusoidal back EMF and the dead time of the inverter, the effect of current harmonic control was verified on a laboratory test bench.

Keywords

Acknowledgement

This research was supported by the National Key Research and Development Program of China (Grant No. 2018YFB0104702)

References

  1. Cai, W.: Starting engines and powering electric loads with one machine. IEEE Ind. Appl. Mag. 12(6), 29-38 (2006). https://doi.org/10.1109/IA-M.2006.248011
  2. Zhu, Z., Howe, D.: Electrical machines and drives for electric, hybrid, and fuel cell vehicles. Proc. IEEE 95(4), 746-765 (2007) https://doi.org/10.1109/JPROC.2006.892482
  3. Liu, X., Chen, H., et al.: Research on the performances and parameters of interior PMSM used for electric vehicles. IEEE Trans. Industr. Electron. 63(6), 3533-3545 (2016). https://doi.org/10.1109/TIE.2016.2524415
  4. Hwang, S.-H., Kim, J.-M.: Dead time compensation method for voltage-fed PWM inverter. IEEE Trans. Energy Convers. 25(1), 1-10 (2010) https://doi.org/10.1109/TEC.2009.2031811
  5. Sun, X., Shi, Z., Lei, G., et al.: Multi-objective design optimization of an IPMSM based on multilevel strategy. IEEE Trans. Industr. Electron. 68(1), 139-148 (2021). https://doi.org/10.1109/TIE.2020.2965463
  6. Sun, X., Shi, Z., Zhu, J.: Multi-objective design optimization of an IPMSM for EVs based on fuzzy method and sequential Taguchi method. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2020.3031534
  7. Kim, K.-C.: A novel method for minimization of cogging torque and torque ripple for interior permanent magnet synchronous motor. IEEE Trans. Magn. 50(2), 793-796 (2014) https://doi.org/10.1109/TMAG.2013.2285234
  8. Feng, G., Lai, C., Kar, N.C.: A closed-loop fuzzy-logic-based current controller for PMSM torque ripple minimization using the magnitude of speed harmonic as the feedback control signal. IEEE Trans. Ind. Electron. 64(4), 2642-2653 (2017) https://doi.org/10.1109/TIE.2016.2631524
  9. Chai, S., Wang, L., Rogers, E.: A cascade MPC control structure for a PMSM with speed ripple minimization. IEEE Trans. Ind. Electron. 60(8), 2978-2987 (2013) https://doi.org/10.1109/TIE.2012.2201432
  10. Lai, C., Feng, G., et al.: Investigations of the influence of PMSM parameter variations in optimal stator current design for torque ripple minimization. IEEE Trans. Energy Convers. 32(3), 1052-1062 (2017) https://doi.org/10.1109/TEC.2017.2682178
  11. Nakao, N., Akatsu, K.: Suppressing pulsating torques: torque ripple control for synchronous motors. IEEE Ind. Appl. Mag. 20(6), 33-44 (2014) https://doi.org/10.1109/MIAS.2013.2288383
  12. Kim. H., Bhattacharya, S.: A novel current control strategy based on harmonic voltage injection for power losses reduction of PMSMs with non-sinusoidal back-EMF. 2019 IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA, 2019, pp. 1-6, doi: https://doi.org/10.1109/IAS.2019.8912372.
  13. Zhong, Z., Jiang, S., et al.: Active torque ripple reduction based on an analytical model of torque. IET Electr. Power Appl. 11(3), 331-341 (2017) https://doi.org/10.1049/iet-epa.2016.0475
  14. Mattavelli, P., Tubiana, L., Zigliotto, M.: Torque-ripple reduction in PM synchronous motor drives using repetitive current control. IEEE Trans. Power Electron. 20(6), 1423-1431 (2005) https://doi.org/10.1109/TPEL.2005.857559
  15. Qian, W., Panda, S.K., Xu, J.-X.: Torque ripple minimization in PM synchronous motors using iterative learning control. IEEE Trans. Power Electron. 19(2), 272-279 (2004) https://doi.org/10.1109/TPEL.2003.820537
  16. Liu, J., Li, H., Deng, Y.: Torque ripple minimization of PMSM based on robust ILC via adaptive sliding mode control. IEEE Trans. Power Electron. 33(4), 3655-3671 (2018). https://doi.org/10.1109/TPEL.2017.2711098
  17. Wang, L., Wang, M., et al.: A loading control strategy for electric load simulators based on proportional resonant control. IEEE Trans. Ind. Electron. 65(6), 4608-4618 (2018). https://doi.org/10.1109/TIE.2017.2756585
  18. Ye, T., Dai, N., et al.: Analysis, design, and implementation of a quasi-proportional-resonant controller for a multifunctional capacitive-coupling grid-connected inverter. IEEE Trans. Ind. Appl. 52(5), 4269-4280 (2016). https://doi.org/10.1109/TIA.2016.2581152
  19. Herman, L., Papic, I., Blazic, B.: A proportional-resonant current controller for selective harmonic compensation in a hybrid active power filter. IEEE Trans. Power Deliv. 29(5), 2055-2065 (2014). https://doi.org/10.1109/TPWRD.2014.2344770
  20. Xia, C., Ji, B., Yan, Y.: Smooth speed control for low-speed high-torque permanent-magnet synchronous motor using proportional-integral-resonant controller. IEEE Trans. Ind. Electron. 62(4), 2123-2134 (2015). https://doi.org/10.1109/TIE.2014.2354593
  21. Gao, J., Wu, X., et al.: Torque ripple minimization of permanent magnet synchronous motor using a new proportional resonant controller. IET Power Electron. 10(2), 208-214 (2017). https://doi.org/10.1049/iet-pel.2015.0946
  22. Krause, P.C.: Method of multiple reference frames applied to the analysis of symmetrical induction machinery. IEEE Trans. Power Appar. Syst. 87(1), 218-227 (1968) https://doi.org/10.1109/TPAS.1968.291992
  23. Dhulipati, H., Mukundan, S., et al.: Multiple reference frame-based extended concentrated wound PMSM model considering PM flux linkage and inductance harmonics. IEEE Trans. Energy Convers. 34(2), 731-740 (2019). https://doi.org/10.1109/TEC.2018.2880869
  24. Xiao, P., Corzine, K.A., Venayagamoorthy, G.K.: Multiple reference frame-based control of three-phase PWM boost rectifiers under unbalanced and distorted input conditions. IEEE Trans. Power Electron. 23(4), 2006-2017 (2008). https://doi.org/10.1109/TPEL.2008.925205
  25. Feng, G., Lai, C., et al.: Multiple reference frame based torque ripple minimization for PMSM drive under both steady-state and transient conditions. IEEE Trans. Power Electron. 34(7), 6685-6696 (2019). https://doi.org/10.1109/TPEL.2018.2876607
  26. Liu, G., Chen, B., et al.: Selective current harmonic suppression for high-speed PMSM based on high-precision harmonic detection method. IEEE Trans. Ind. Inf. 15(6), 3457-3468 (2018). https://doi.org/10.1109/TII.2018.2873652
  27. Jiang, X., Li, W. et al.: A novel measuring method of PMSM nonlinear incremental inductances. 2009 International conference on measuring technology and mechatronics automation, Hunan, China, 2009, pp. 170-173, doi: https://doi.org/10.1109/ICMTMA.2009.348.
  28. Zhong, Z., Jiang, S., et al.: A harmonic voltage and current coupling permanent magnet synchronous motor model and feedforward control. Trans. China Electrotech. Soc. 32(18), 131-142 (2017). https://doi.org/10.19595/j.cnki.1000-6753.tces.161956
  29. Jeong, I., Nam, K.: Analytic expressions of torque and inductances via polynomial approximations of flux linkages. IEEE Trans. Magn. 51(7), 1-9 (2015). https://doi.org/10.1109/TMAG.2015.2394741
  30. Zhong, Z., Zhou, S., et al.: Current harmonic selection for torque ripple suppression based on analytical torque model of PMSMs. J. Power Electron. 20(4), 971-979 (2020). https://doi.org/10.1007/s43236-020-00093-9