DOI QR코드

DOI QR Code

Investigation of ultra-lift Luo-converter with peak, average and hysteresis current-mode control

  • Raji, J. (Department of Electrical and Electronics Engineering, SSN College of Engineering) ;
  • Kamaraj, V. (Department of Electrical and Electronics Engineering, SSN College of Engineering)
  • Received : 2020.11.06
  • Accepted : 2021.02.27
  • Published : 2021.06.20

Abstract

The Renewable energy system, electric vehicle, and telecommunication applications require relatively stable power converters with a high gain and enhanced noise immunity. A study of three different types of current-mode controllers for high-gain ultra-lift Luo-converter (ULC) is discussed in this paper. The stability of a constant frequency peak current-mode controller (PCM), an average current-mode controller (ACM) and a variable frequency hysteresis current-mode controller (HCM) are analyzed based on small-signal characteristics. Using mathematical modeling of the controllers, the closed-loop transfer functions such as control voltage to output voltage, current loop gain, inductor current to control voltage, and audio susceptibility are obtained. These transfer functions along with MATLAB simulation results for PCM, ACM and HCM controllers are compared. Then, the component losses of the ULC converter using PCM, ACM and HCM controllers are calculated and an efficiency comparison of different control techniques is done. Investigations of the voltage and current stresses of the switch and diodes are also carried out. Finally, a prototype is fabricated to validate the performance of the converter.

Keywords

Acknowledgement

The authors did not receive any support from the organization for the submitted work. The authors have no related financial or non-financial interests to disclose.

References

  1. Luo, F.L., Ye, H.: Ultra-lift Luo-converter. Proc. IEE Electr. Power Appl. 152(1), 27-32 (2005) https://doi.org/10.1049/ip-epa:20040870
  2. Janke, W., Walczak, M.: Comparison of transient states in step-down power converter (BUCK) in continuous and discontinuous conduction mode. Bull. Pol. Acad. Tech. 62(4), 773-778 (2014)
  3. Liu, X., Zheng, X., He, Y.: Passive islanding detection method for grid-connected inverters based on closed-loop frequency control. J. Electr. Eng. Technol. 14, 2323-2332 (2019) https://doi.org/10.1007/s42835-019-00181-2
  4. Raji, J., Kamaraj, V.: Analysis of stability and dynamic behavior of ultra lift luo converter. J. Electr. Eng. Technol. 12(5), 1970-1979 (2017) https://doi.org/10.5370/JEET.2017.12.5.1970
  5. Kazimierczuk, M.K.: Pulse-width modulated DC-DC power converters. Wiley, Hoboken (2008)
  6. Zhang, Y., Zhang, Y., Wang, X.: Comparative study on predictive dead beat peak current, valley current and average current control algorithms for phase-shifted full bridge DC/DC converters. J. Power Electr. 20(1), 87-99 (2020) https://doi.org/10.1007/s43236-019-00021-6
  7. Michal, V., Nicolo, Z., Matteo, A.: Low-complexity inductance estimation for switched-mode power converters using peak-current mode control. IET Power Electr. 13(11), 2269-2273 (2020) https://doi.org/10.1049/iet-pel.2019.1234
  8. Han, Y., Wu, Q., Li, Y., Zhu, Z.: Average inductor current measure and control strategy for multimode primary-side flyback converters. IEEE Trans. Power Electron. 35(12), 13096-13103 (2020) https://doi.org/10.1109/tpel.2020.2991216
  9. Kazimierczuk, M.K.: Transfer function of current modulator in PWM converters with current-mode control. IEEE Transl. Circuits Syst. I 47(9), 1407-1412 (2000) https://doi.org/10.1109/81.883339
  10. Chen, S.Y.: Block diagrams and transfer functions of control-to output and line-to-output for peak current-mode controlled boost converters. IET Power Electr. 6(1), 60-66 (2013) https://doi.org/10.1049/iet-pel.2012.0013
  11. Huang, Q., Huang, A.Q.: Variable frequency average current mode control for ZVS symmetrical dual-buck H-bridge all-GaN inverter. IEEE J. Emerg. Select. Top. Power Electr. 8(4), 4416-4427 (2020) https://doi.org/10.1109/jestpe.2019.2940270
  12. Nayak, G., Nath, S.: Decoupled average current control of coupled inductor single-input dual-output buck converter. IEEE J. Emerg. Sel. Top. Ind. Electr. 1(2), 152-161 (2020) https://doi.org/10.1109/jestie.2020.3014833
  13. Nair, H.S., Lakshmi Narasamma, N.: A computationally simple predictive CCM average current controller with nearly zero tracking error for boost PFC converter. IEEE Trans. Ind. Appl. 56(5), 5083-5094 (2020) https://doi.org/10.1109/tia.2020.2999268
  14. Tan, F.D., Middlebrook, R.D.: A unified model for current-programmed converters. IEEE Trans. Power Electron. 10(4), 397-408 (1995)
  15. Janke, W.: Equivalent circuits for averaged description of DC-DC switch-mode power converters based on separation of variables approach. Bull. Pol. Acad. Tech 61(3), 711-723 (2013)
  16. Tang, W., Lee, F.C., Ridley, R.B.: Small-signal modeling of average current-mode control. IEEE Trans. Power Electron. 8(2), 112-119 (1993) https://doi.org/10.1109/63.223961
  17. Dixon, L. H.: Average current-mode control of switching power supplies. Unitrode Power Supply Design Seminar Handbook (1990)
  18. He, S., Hung, J.Y., Nelms, R.M.: Small-signal modeling of i2 average current mode control. IEEE Trans. Power Electron. 31(5), 3849-3858 (2016) https://doi.org/10.1109/TPEL.2015.2459912
  19. Chan, C.Y.: Comparative study of current-mode controllers for a high-order boost dc-dc Converter. IET Power Electronics 7(1), 237-243 (2014) https://doi.org/10.1049/iet-pel.2012.0513
  20. Zhang, X., Min, R., Lyu, D., Zhang, D., Wang, Y., Gu, Y.: Current tracking delay effect minimization for digital peak current mode control of DC-DC boost converter. IEEE Trans. Power Electr. 34(12), 12384-12395 (2019) https://doi.org/10.1109/tpel.2019.2905864
  21. Tsai, J.C., Chen, C.L., Lee, Y.H.: Modified hysteretic current control (MHCC) for improving transient response of boost converter. IEEE Transl. Circuits Syst. I 58(8), 1967-1979 (2011) https://doi.org/10.1109/TCSI.2011.2106231
  22. Kayalvizhi, R., Natarajan, S.P., Palanisamy, P.: Development of a neuro controller for a negative output elementary luo converter. J Power Electr. 7(2), 140-145 (2007)
  23. Kang, J., Park, J., Jeong, M., Yoo, C.: A time-domain-controlled current-mode buck converter with wide output voltage range. IEEE J. Solid State Circuits 54(3), 865-873 (2019) https://doi.org/10.1109/jssc.2018.2884912
  24. Choudhury, T.R., Nayak, B., Santra, S.B.: Investigation of voltage stress on a single switch boost-fly-back integrated high gain converter with light load condition. Ain Shams Eng J 10(1), 217-226 (2019) https://doi.org/10.1016/j.asej.2018.10.009