DOI QR코드

DOI QR Code

Model predictive control of nine-switch converter with output filter for independent control of two loads

  • Pang, Yi (School of Control and Mechanical Engineering, Tianjin Chengjian University) ;
  • Zhang, Jingmei (School of Control and Mechanical Engineering, Tianjin Chengjian University) ;
  • Xu, Dongxing (School of Control and Mechanical Engineering, Tianjin Chengjian University) ;
  • Yin, Chang (School of Control and Mechanical Engineering, Tianjin Chengjian University) ;
  • Wu, Zifeng (School of Control and Mechanical Engineering, Tianjin Chengjian University) ;
  • Sun, Hexu (School of Electrical Engineering, Hebei University of Science and Technology) ;
  • Pan, Lei (School of Control and Mechanical Engineering, Tianjin Chengjian University)
  • Received : 2019.12.23
  • Accepted : 2020.08.31
  • Published : 2021.01.20

Abstract

This paper proposes a model predictive control (MPC) algorithm designed for nine-switch converter with output filter (NSCOF) to control two three-phase AC loads independently. A state function of each leg of nine-switch converter (NSC) is established to characterize the internal conditions of the NSC because the traditional model of the NSCOF does not involve the interior model of the NSC. Based on the NSCOF model with the state function of each leg, a prediction model of NSCOF is constructed. The two AC terminals of NSCOF are treated as one module when the MPC is designed. The proposed MPC achieves controlling two three-phase AC loads working under different frequency modes. Furthermore, this algorithm is independent of the modulation method for reducing the difficulty of the controller design and its limits. The simulation and experimental results reveal that the steady-state and dynamic response performance of NSCOF are substantially improved using MPC.

Keywords

Acknowledgement

This work was supported by the Tianjin Education Commission Scientific Research Project [2018KJ179].

References

  1. Dehnavi, S.M.D., Mohamadian, M., Yazdian, A., Ashrafzadeh, F.: Space vectors modulation for nine-switch converters. IEEE Trans. Power Electron. 25(6), 1488-1496 (2010) https://doi.org/10.1109/TPEL.2009.2037001
  2. Li, N., Gao, F., Tian, H., Zhang, T.: Pulse width modulation strategy of nine-switch converter. Automa. Electr. Power Syst. 38(3), 83-88 (2014)
  3. Marcelo Onate, P., Jesus Lopez, J., Restrepo, J.Q., Aredes, M.: Control of a back-to-back converter as a power transfer system using synchronverter approach. IET Gener. Transm. Distrib. 12(9), 1998-2005 (2018) https://doi.org/10.1049/iet-gtd.2017.0093
  4. Pan, L., Zhang, J.R., Wang, K., Wang, B.B., Pang, Y., Zhu, L.: Direct power control without current sensors fornine-switch inverters. J. Power Electron. 18(1), 1-10 (2018) https://doi.org/10.6113/JPE.2018.18.1.1
  5. Liu, C., Wu, B., Zargari, N., Xu, D., Wang, J.: A novel nine-switch PWM rectifier-inverter topology for three-phase UPS applications. Eur. Power Electron. Drives J. 19(2), 36-44 (2009)
  6. Tang, W.Q.Y., Hu, J.B., Chang, Y.Z., Feng, L.: Modeling of DFIG-based wind turbine for power system transient response analysis in rotor speed control timescale. IEEE Trans. Power Electron. 33(6), 6795-6805 (2018)
  7. Marques, G.D., Iacchetti, M.F.: DFIG topologies for DC networks: a review on control and design features. IEEE Trans. Power Electron. 34(2), 1299-1316 (2019) https://doi.org/10.1109/tpel.2018.2829546
  8. Zhang, L., Loh, P.C., Gao, F.: An integrated nine-switch power conditioner for power quality enhancement and voltage sag mitigation. IEEE Trans. Power Electron. 27(3), 1177-1190 (2012) https://doi.org/10.1109/TPEL.2011.2115256
  9. Dehghan, S.M., Mohamadian,M., Rajaei,A.H., Yazdian, A.: Full modeling a series HEV based on BZS-NSI. In: 2011 2nd Power Electronics, Drive Systems and Technologies Conference, 439-444 (2011)
  10. Diab, M.S., Elserougi, A., Abdel-Khalik, A.S., Massoud, A., Ahmed, S.: A nine-switch-converter-based integrated motor drive and battery charger system for EVs using symmetrical Six-Phase machines. IEEE Trans. Ind. Electron. 63(9), 5326-5335 (2016) https://doi.org/10.1109/TIE.2016.2555295
  11. Loh, P.C., Zhang, L., Gao, F.: Compact integrated energy systems for distributed generation. IEEE Trans. Ind. Electron. 60(4), 1492-1502 (2013) https://doi.org/10.1109/TIE.2012.2208429
  12. Santos, E.C.D., Jacobina, C.B., Silva, O.I.D.: Six-phase machine drive system with nine-switch converter. In: Annual Conference of the IEEE Industrial Electronics Society, 4204-4209 (2011)
  13. Lee, S.S., Heng, Y.E.: Predictive control of power fow between two islanded microgrids using nine-switch converter. J. Renew. Sustain. Energy. 8(5), 055502 (2016) https://doi.org/10.1063/1.4963253
  14. Wen, G., Chen, Y., Zhong, Z., Kang, Y.: Dynamical voltage and current assignment strategies of nine-switch-converter-based DFIG wind power system for low voltage ride through (LVRT) under symmetrical grid voltage dip. IEEE Trans. Ind. Appl. 52(4), 3422-3434 (2016) https://doi.org/10.1109/TIA.2016.2535274
  15. Chen, Y., Wen, G., Kang, Y.: A low voltage ride through strategy for nine-switch-converter doubly-fed wind generation system based on the DC-link voltage dynamic assignment. Proc. Chin. Soc. Electr. Eng. 37(12), 3583-3593 (2017)
  16. Qiu, W.K., Chen, Y., Wen, G., Kang, Y.: Constant switching frequency current sliding mode control method for nine-switch-converter-based doubly-fed wind generation system. Proc. Chin. Soc. Electr. Eng. 38(20), 6134-6144 (2018)
  17. Liu, X., Wang, D., Peng, Z.: An improved finite control-set model predictive control for nested neutral point-clamped converters under both balanced and unbalanced grid conditions. Int. J. Electr. Power Energy Syst. 104, 910-923 (2019) https://doi.org/10.1016/j.ijepes.2018.07.046
  18. Lee, S.S., Heng, Y.E., Roslan, M.A.: Finite control set model predictive control of nine-switch AC/DC/AC converter, 2016 IEEE Int. Conf. Power Energy 3, 746-751 (2016)
  19. Khan, H.S., Aamir, M., Ali, M., Waqar, A., Ali, S.U., Imtiaz, J.: Finite control set model predictive control for parallel connected online ups system under unbalanced and nonlinear loads. Energies. 12(4), 581 (2019) https://doi.org/10.3390/en12040581
  20. Dong, K.D., Shi, T.N., Xiao, S.X., Li, X.M., Xia, C.L.: Finite set model predictive control method for quasi-Z source inverter-permanent magnet synchronous motor drive system. IET Electr. Power Appl. 13(3), 302-309 (2019) https://doi.org/10.1049/iet-epa.2018.5486
  21. Chen, Z.Y., Qiu, J.Q., Jin, M.J.: Prediction-error-driven position estimation method for finite-control-set model predictive control of interior permanent-magnet synchronous motors. IEEE J. Emerg. Select. Top. Power Electron. 7(1), 282-295 (2019) https://doi.org/10.1109/jestpe.2018.2870905
  22. Mynar, Z., Vesely, L., Vaclavek, P.: PMSM model predictive control with feld weakening implementation. IEEE Trans. Ind. Electron. 63(8), 5156-5166 (2016) https://doi.org/10.1109/TIE.2016.2558165
  23. Xie, W., Wang, X., Wang, F., Xu, W., Kennel, R., Gerling, D.: Dynamic loss minimization of finite control set-model predictive torque control for electric drive system. IEEE Trans. Power Electron. 31(1), 849-860 (2016) https://doi.org/10.1109/TPEL.2015.2410427
  24. Schoonhoven, G., Uddin, M.N.: Harmonic injection-based adaptive control of IPMSM motor drive for reduced motor current THD. IEEE Trans. Ind. Appl. 53(1), 483-491 (2017) https://doi.org/10.1109/TIA.2016.2603145
  25. Jarutus, N., Kumsuwan, Y.: A Carrier-based Phase-shift Space Vector Modulation Strategy for a Nine-switch Inverter. IEEE Trans. Power Electron. 32(5), 3425-3441 (2016) https://doi.org/10.1109/TPEL.2016.2587811
  26. Tang, S.Y., Peng, L., Kang, Y.: Research on dual-loop digital control technique for pulse width modulation inverters. Proc. Chin. Soc. Electric. Eng. 29(15), 55-60 (2009)