DOI QR코드

DOI QR Code

Minimization of ripples in stator current and torque of PMSM drive using advanced predictive current controller based on deadbeat control theory

  • Shukla, Suryakant (Department of Electrical Engineering, Delhi Technological University) ;
  • Sreejeth, Mini (Department of Electrical Engineering, Delhi Technological University) ;
  • Singh, Madhusudan (Department of Electrical Engineering, Delhi Technological University)
  • Received : 2020.06.11
  • Accepted : 2020.09.01
  • Published : 2021.01.20

Abstract

An advanced predictive current controller (APCC) based on deadbeat (DB) control theory for permanent magnet synchronous motor (PMSM) drives is proposed in this paper, where the optimum voltage vector is computed offline by solving an optimization problem. The optimum voltage vector along with a zero-voltage vector (ZVV) is applied to the motor under steady state condition to minimize ripples in the stator current. To achieve a fast dynamic response during the transient state, the voltage vector having the largest magnitude is applied for the complete duration of the control cycle. The phase of the voltage-vector is synchronized to control the components of the stator-current in a DB manner. In previously reported control methods, the two best voltage vectors (BVVs) are selected through enumeration and two independent duty ratios are calculated. However, this increases the computation complexity and computational time. The proposed APCC employs a novel approach in calculating the stator current references of PMSM using maximum torque per ampere (MTPA) control. The effectiveness of the proposed APCC is investigated and compared with some recently reported predictive current controllers. The APCC improves the performance of PMSM drive under steady and transient operation with lower total harmonics distortion (THD) of the stator current and better torque dynamics.

Keywords

References

  1. Sreejeth, M., Singh, M., Kumar, P.: Particle swarm optimization in efficiency improvement of vector controlled surface mounted permanent magnet synchronous motor drive. IET Power Electron. 8(5), 760-769 (2015) https://doi.org/10.1049/iet-pel.2014.0399
  2. Suryakant, S., Sreejeth, M., Singh, M.: Performance analysis of PMSM drive using hysteresis current controller and PWM current controller. In: Proc. IEEE international students' conference on electrical, electronics and computer science (SCEECS), Bhopal, pp. 1-5 (2018)
  3. Casadei, D., Profumo, F., Serra, G., Tani, A.: FOC and DTC: two variable schemes for induction motors torque control. IEEE Trans. Power Electron. 17(5), 779-787 (2002) https://doi.org/10.1109/TPEL.2002.802183
  4. Zhang, Z., Xu, H., Xu, L., Heilman, L.E.: Sensorless direct field-oriented control of three-phase induction motors based on "Sliding Mode" for washing-machine drive applications. IEEE Trans. Ind. Appl. 42(3), 694-701 (2006) https://doi.org/10.1109/TIA.2006.872919
  5. Ye, J., Malysz, P., Emadi, A.: A fixed-switching frequency integral sliding mode current controller for switched reluctance motor drives. IEEE J. Emerg. Sel. Top. Power Electron. 3(2), 381-394 (2015) https://doi.org/10.1109/JESTPE.2014.2357717
  6. Aydogmus, O., Deniz, E., Kayisli, K.: PMSM drive fed by sliding mode controlled PFC boost converter. Arab. J. Sci. Eng. 39, 4765-4773 (2014) https://doi.org/10.1007/s13369-014-1087-6
  7. Azza, H.B., Zaidi, N., Jemli, M., Boussak, M.: Development and experimental evaluation of a sensorless speed control of SPIM using adaptive sliding mode-MRAS strategy. IEEE J. Emerg. Sel. Top. Power Electron. 2(2), 319-328 (2014) https://doi.org/10.1109/JESTPE.2014.2299893
  8. Amezquita-Brooks, L., Liceaga-Castro, J., Liceaga-Castro, E.: Speed and position controllers using indirect field oriented control: a classical control approach. IEEE Trans. Ind. Electron. 61(4), 1928-1943 (2013) https://doi.org/10.1109/TIE.2013.2262750
  9. Singh, G.K., Singh, D.K.P., Nam, K., Lim, S.K.: A simple indirect field-oriented control scheme for multi converter-fed induction motor. IEEE Trans. Ind. Electron. 52(6), 1653-1659 (2005) https://doi.org/10.1109/TIE.2005.858707
  10. Masiala, M., Vafakhah, B., Salmon, J., Knight, A.M.: Fuzzy self-tuning speed control of an indirect field-oriented control induction motor drive. IEEE Trans. Ind. Appl. 44(6), 1732-1740 (2008) https://doi.org/10.1109/TIA.2008.2006342
  11. Wang, Y.: Deadbeat model predictive torque control with discrete space vector modulation for PMSM drives. IEEE Trans. Ind. Electron. 64(5), 3537-3547 (2017) https://doi.org/10.1109/TIE.2017.2652338
  12. Yan, Y., Wang, S., Xia, C., Wang, H., Shi, T.: Hybrid control set-model predictive control for field-oriented control of VSI-PMSM. IEEE Trans. Energy Conv. 31(4), 1622-1633 (2016) https://doi.org/10.1109/TEC.2016.2598154
  13. Zhou, Z.Q.: Torque ripple minimization of predictive torque control for PMSM with extended control set. IEEE Trans. Ind. Electron. 64(9), 6930-6939 (2017) https://doi.org/10.1109/TIE.2017.2686320
  14. Preindl, M., Schaltz, E., Thogersen, P.: Switching frequency reduction using model predictive direct current control for high-power voltage source inverters. IEEE Trans. Ind. Electron. 58(7), 2826-2835 (2011) https://doi.org/10.1109/TIE.2010.2072894
  15. Zarei, M.E., Nicolas, C.V., Arribas, J.R.: Improved predictive direct power control of doubly fed induction generator during unbalanced grid voltage based on four vectors. IEEE J. Emerg. Sel. Top. Power Electron. 5(2), 695-707 (2017) https://doi.org/10.1109/JESTPE.2016.2611004
  16. Shadmand, M.B., Mosa, M., Balog, R.S., Abu-Rub, H.: Model predictive control of a capacitor less matrix converter-based STATCOM. IEEE J. Emerg. Sel. Top. Power Electron. 5(2), 796-808 (2017) https://doi.org/10.1109/JESTPE.2016.2638883
  17. Lin, C.-K.: Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique. IEEE Trans. Ind. Electron. 61(2), 667-681 (2014) https://doi.org/10.1109/TIE.2013.2253065
  18. Rawlings, J.B., Mayne, D.Q.: Model predictive control: theory and design. Nob Hill Publ, Madison (2009)
  19. Morel, F., Lin-Shi, X., Retif, J.-M., Allard, B., Buttay, C.: A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive. IEEE Trans. Ind. Electron. 56(7), 2715-2728 (2009) https://doi.org/10.1109/TIE.2009.2018429
  20. Zhang, Y., Gao, S., Xu, W.: An improved model predictive current control of permanent magnet synchronous motor drives. In: Proc. IEEE applied power electronics conference and exposition (APEC), pp 2868-2874 (2016)
  21. Karamanakos, P., Stolze, P., Kennel, R.M., Manias, S., Mouton, H.: Variable switching point predictive torque control of induction machines. IEEE J. Emerg. Sel. Top. Power Electron. 2(2), 285-295 (2014) https://doi.org/10.1109/JESTPE.2013.2296794
  22. Yaramasu, V., Rivera, M., Wu, B., Rodriguez, J.: Model predictive current control of two-level four-leg inverters - part i: concept, algorithm, and simulation analysis. IEEE Trans. Power Electron. 28(7), 3459-3468 (2013) https://doi.org/10.1109/TPEL.2012.2227509
  23. Yaramasu, V., Wu, B., Rivera, M., Rodriguez, J.: A new power conversion system for megawatt PMSG wind turbines using four-level converters and a simple control scheme based on two-step model predictive strategy-part I: modeling and theoretical analysis. IEEE J. Emerg. Sel. Top. Power Electron. 2(1), 3-13 (2014) https://doi.org/10.1109/JESTPE.2013.2294920
  24. Vafaie, M.H., Dehkordi, B.M., Moallem, P., Kiyoumarsi, A.: Minimizing torque and flux ripples and improving dynamic response of PMSM using a voltage vector with optimal parameters. IEEE Trans. Ind. Electron. 63(6), 3876-3888 (2016) https://doi.org/10.1109/TIE.2015.2497251
  25. Vafaie, M.H., Dehkordi, B.M., Moallem, P., Kiyoumarsi, A.: Improving the steady-state and transient performances of PMSM through an advanced deadbeat torque and flux control system. IEEE Trans. Power Electron. 32(4), 2964-2975 (2017) https://doi.org/10.1109/TPEL.2016.2577591
  26. Vafaie, M.H., Dehkordi, B.M., Moallem, P., Kiyoumarsi, A.: A new predictive direct torque control method for improving both steady-state and transient state operations of PMSM. IEEE Trans. Power Electron. 31(5), 3738-3753 (2016) https://doi.org/10.1109/TPEL.2015.2462116
  27. Sun, X., Wu, M., Lei, G., Guo, Y., Zhu, J.: An improved model predictive current control for PMSM drives based on current track circle. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2020.2984433
  28. Sun, X., et al.: MPTC for PMSMs of EVs with multi-motor driven system considering optimal energy allocation. IEEE Trans. Magn. 55(7), 1-6 (2019)
  29. Zhang, Y., Zhu, J., Xu, W., Guo, Y.: A simple method to reduce torque ripple in direct torque-controlled permanent-magnet synchronous motor by using vectors with variable amplitude and angle. IEEE Trans. Ind. Electron. 58(7), 848-2859 (2011) https://doi.org/10.1109/TIE.2010.2076413
  30. Zhang, Y., Xu, D., Liu, J., Gao, S., Xu, W.: Performance improvement of model predictive current control of permanent magnet synchronous motor drives. IEEE Trans. Ind. Appl. 53(4), 3683-3695 (2017) https://doi.org/10.1109/TIA.2017.2690998
  31. Ren, Y., Zhu, Z., Liu, J.: Direct torque control of permanent-magnet synchronous machine drives with a simple duty ratio regulator. IEEE Trans. Ind. Electron. 61(10), 5249-5258 (2014) https://doi.org/10.1109/TIE.2014.2300070
  32. Niu, F., Li, K., Wang, Y.: Direct torque control for permanent magnet synchronous machines based on duty ratio modulation. IEEE Trans. Ind. Electron. 62(10), 6160-6170 (2015) https://doi.org/10.1109/TIE.2015.2426678
  33. Zhang, X., Hou, B.: Double vectors model predictive torque control without weighting factor based on voltage tracking error. IEEE Trans. Power Electron. 33(3), 2368-2380 (2018) https://doi.org/10.1109/TPEL.2017.2691776
  34. Shyu, K.-K., Lin, J.-K., Pham, V.-T., Yang, M.-J., Wang, T.-W.: Global minimum torque ripple design for direct torque control of induction motor drives. IEEE Trans. Ind. Electron. 57(9), 148-3156 (2010) https://doi.org/10.1109/TIE.2009.2038401

Cited by

  1. Sensorless Predictive Current Control of a Permanent Magnet Synchronous Motor Powered by a Three-Level Inverter vol.11, pp.22, 2021, https://doi.org/10.3390/app112210840