References
- Sreejeth, M., Singh, M., Kumar, P.: Particle swarm optimization in efficiency improvement of vector controlled surface mounted permanent magnet synchronous motor drive. IET Power Electron. 8(5), 760-769 (2015) https://doi.org/10.1049/iet-pel.2014.0399
- Suryakant, S., Sreejeth, M., Singh, M.: Performance analysis of PMSM drive using hysteresis current controller and PWM current controller. In: Proc. IEEE international students' conference on electrical, electronics and computer science (SCEECS), Bhopal, pp. 1-5 (2018)
- Casadei, D., Profumo, F., Serra, G., Tani, A.: FOC and DTC: two variable schemes for induction motors torque control. IEEE Trans. Power Electron. 17(5), 779-787 (2002) https://doi.org/10.1109/TPEL.2002.802183
- Zhang, Z., Xu, H., Xu, L., Heilman, L.E.: Sensorless direct field-oriented control of three-phase induction motors based on "Sliding Mode" for washing-machine drive applications. IEEE Trans. Ind. Appl. 42(3), 694-701 (2006) https://doi.org/10.1109/TIA.2006.872919
- Ye, J., Malysz, P., Emadi, A.: A fixed-switching frequency integral sliding mode current controller for switched reluctance motor drives. IEEE J. Emerg. Sel. Top. Power Electron. 3(2), 381-394 (2015) https://doi.org/10.1109/JESTPE.2014.2357717
- Aydogmus, O., Deniz, E., Kayisli, K.: PMSM drive fed by sliding mode controlled PFC boost converter. Arab. J. Sci. Eng. 39, 4765-4773 (2014) https://doi.org/10.1007/s13369-014-1087-6
- Azza, H.B., Zaidi, N., Jemli, M., Boussak, M.: Development and experimental evaluation of a sensorless speed control of SPIM using adaptive sliding mode-MRAS strategy. IEEE J. Emerg. Sel. Top. Power Electron. 2(2), 319-328 (2014) https://doi.org/10.1109/JESTPE.2014.2299893
- Amezquita-Brooks, L., Liceaga-Castro, J., Liceaga-Castro, E.: Speed and position controllers using indirect field oriented control: a classical control approach. IEEE Trans. Ind. Electron. 61(4), 1928-1943 (2013) https://doi.org/10.1109/TIE.2013.2262750
- Singh, G.K., Singh, D.K.P., Nam, K., Lim, S.K.: A simple indirect field-oriented control scheme for multi converter-fed induction motor. IEEE Trans. Ind. Electron. 52(6), 1653-1659 (2005) https://doi.org/10.1109/TIE.2005.858707
- Masiala, M., Vafakhah, B., Salmon, J., Knight, A.M.: Fuzzy self-tuning speed control of an indirect field-oriented control induction motor drive. IEEE Trans. Ind. Appl. 44(6), 1732-1740 (2008) https://doi.org/10.1109/TIA.2008.2006342
- Wang, Y.: Deadbeat model predictive torque control with discrete space vector modulation for PMSM drives. IEEE Trans. Ind. Electron. 64(5), 3537-3547 (2017) https://doi.org/10.1109/TIE.2017.2652338
- Yan, Y., Wang, S., Xia, C., Wang, H., Shi, T.: Hybrid control set-model predictive control for field-oriented control of VSI-PMSM. IEEE Trans. Energy Conv. 31(4), 1622-1633 (2016) https://doi.org/10.1109/TEC.2016.2598154
- Zhou, Z.Q.: Torque ripple minimization of predictive torque control for PMSM with extended control set. IEEE Trans. Ind. Electron. 64(9), 6930-6939 (2017) https://doi.org/10.1109/TIE.2017.2686320
- Preindl, M., Schaltz, E., Thogersen, P.: Switching frequency reduction using model predictive direct current control for high-power voltage source inverters. IEEE Trans. Ind. Electron. 58(7), 2826-2835 (2011) https://doi.org/10.1109/TIE.2010.2072894
- Zarei, M.E., Nicolas, C.V., Arribas, J.R.: Improved predictive direct power control of doubly fed induction generator during unbalanced grid voltage based on four vectors. IEEE J. Emerg. Sel. Top. Power Electron. 5(2), 695-707 (2017) https://doi.org/10.1109/JESTPE.2016.2611004
- Shadmand, M.B., Mosa, M., Balog, R.S., Abu-Rub, H.: Model predictive control of a capacitor less matrix converter-based STATCOM. IEEE J. Emerg. Sel. Top. Power Electron. 5(2), 796-808 (2017) https://doi.org/10.1109/JESTPE.2016.2638883
- Lin, C.-K.: Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique. IEEE Trans. Ind. Electron. 61(2), 667-681 (2014) https://doi.org/10.1109/TIE.2013.2253065
- Rawlings, J.B., Mayne, D.Q.: Model predictive control: theory and design. Nob Hill Publ, Madison (2009)
- Morel, F., Lin-Shi, X., Retif, J.-M., Allard, B., Buttay, C.: A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive. IEEE Trans. Ind. Electron. 56(7), 2715-2728 (2009) https://doi.org/10.1109/TIE.2009.2018429
- Zhang, Y., Gao, S., Xu, W.: An improved model predictive current control of permanent magnet synchronous motor drives. In: Proc. IEEE applied power electronics conference and exposition (APEC), pp 2868-2874 (2016)
- Karamanakos, P., Stolze, P., Kennel, R.M., Manias, S., Mouton, H.: Variable switching point predictive torque control of induction machines. IEEE J. Emerg. Sel. Top. Power Electron. 2(2), 285-295 (2014) https://doi.org/10.1109/JESTPE.2013.2296794
- Yaramasu, V., Rivera, M., Wu, B., Rodriguez, J.: Model predictive current control of two-level four-leg inverters - part i: concept, algorithm, and simulation analysis. IEEE Trans. Power Electron. 28(7), 3459-3468 (2013) https://doi.org/10.1109/TPEL.2012.2227509
- Yaramasu, V., Wu, B., Rivera, M., Rodriguez, J.: A new power conversion system for megawatt PMSG wind turbines using four-level converters and a simple control scheme based on two-step model predictive strategy-part I: modeling and theoretical analysis. IEEE J. Emerg. Sel. Top. Power Electron. 2(1), 3-13 (2014) https://doi.org/10.1109/JESTPE.2013.2294920
- Vafaie, M.H., Dehkordi, B.M., Moallem, P., Kiyoumarsi, A.: Minimizing torque and flux ripples and improving dynamic response of PMSM using a voltage vector with optimal parameters. IEEE Trans. Ind. Electron. 63(6), 3876-3888 (2016) https://doi.org/10.1109/TIE.2015.2497251
- Vafaie, M.H., Dehkordi, B.M., Moallem, P., Kiyoumarsi, A.: Improving the steady-state and transient performances of PMSM through an advanced deadbeat torque and flux control system. IEEE Trans. Power Electron. 32(4), 2964-2975 (2017) https://doi.org/10.1109/TPEL.2016.2577591
- Vafaie, M.H., Dehkordi, B.M., Moallem, P., Kiyoumarsi, A.: A new predictive direct torque control method for improving both steady-state and transient state operations of PMSM. IEEE Trans. Power Electron. 31(5), 3738-3753 (2016) https://doi.org/10.1109/TPEL.2015.2462116
- Sun, X., Wu, M., Lei, G., Guo, Y., Zhu, J.: An improved model predictive current control for PMSM drives based on current track circle. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2020.2984433
- Sun, X., et al.: MPTC for PMSMs of EVs with multi-motor driven system considering optimal energy allocation. IEEE Trans. Magn. 55(7), 1-6 (2019)
- Zhang, Y., Zhu, J., Xu, W., Guo, Y.: A simple method to reduce torque ripple in direct torque-controlled permanent-magnet synchronous motor by using vectors with variable amplitude and angle. IEEE Trans. Ind. Electron. 58(7), 848-2859 (2011) https://doi.org/10.1109/TIE.2010.2076413
- Zhang, Y., Xu, D., Liu, J., Gao, S., Xu, W.: Performance improvement of model predictive current control of permanent magnet synchronous motor drives. IEEE Trans. Ind. Appl. 53(4), 3683-3695 (2017) https://doi.org/10.1109/TIA.2017.2690998
- Ren, Y., Zhu, Z., Liu, J.: Direct torque control of permanent-magnet synchronous machine drives with a simple duty ratio regulator. IEEE Trans. Ind. Electron. 61(10), 5249-5258 (2014) https://doi.org/10.1109/TIE.2014.2300070
- Niu, F., Li, K., Wang, Y.: Direct torque control for permanent magnet synchronous machines based on duty ratio modulation. IEEE Trans. Ind. Electron. 62(10), 6160-6170 (2015) https://doi.org/10.1109/TIE.2015.2426678
- Zhang, X., Hou, B.: Double vectors model predictive torque control without weighting factor based on voltage tracking error. IEEE Trans. Power Electron. 33(3), 2368-2380 (2018) https://doi.org/10.1109/TPEL.2017.2691776
- Shyu, K.-K., Lin, J.-K., Pham, V.-T., Yang, M.-J., Wang, T.-W.: Global minimum torque ripple design for direct torque control of induction motor drives. IEEE Trans. Ind. Electron. 57(9), 148-3156 (2010) https://doi.org/10.1109/TIE.2009.2038401
Cited by
- Sensorless Predictive Current Control of a Permanent Magnet Synchronous Motor Powered by a Three-Level Inverter vol.11, pp.22, 2021, https://doi.org/10.3390/app112210840