References
- Wang, J.H., Liserre, M., Blaabjerg, F.: Toward reliable power electronics: challenges, design tools, and opportunities. IEEE Ind. Electron. Mag. 7(2), 17-26 (2013) https://doi.org/10.1109/MIE.2013.2252958
- M. R. Wilkinson et al, "Reliability profiles (Methods)", Technical Report (Project Deliverable), ReliaWind Deliverable D.1.2.
- E. Wolfgang, "Examples for failures in power electronics systems", Proc. ECPE Tutorial Reliability of Power Electronic Systems, 2007.
- Moore, L.M., Post, H.N.: Five years of operating experience at alarge, utility-scale photovoltaic generating plant. J. Progr. Photovolt. Res. Appl. 16(3), 249-259 (2008) https://doi.org/10.1002/pip.800
- Byrne C, und Elektron-ikindustrie ZE, "Handbook for robustness validation of automotive electrical/electronic modules", ZVEI-German Electrical and Electronic Manufacturer's Assoc., 2013.
- Yang, S., et al.: An industry- based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441-1451 (2011) https://doi.org/10.1109/TIA.2011.2124436
- H. S.-H. Chung et al, "Reliability of Power Electronic Converter Systems", IET, 2015, ISBN: 978-1-84919-901-8.
- http://www.dfrsolutions.com.
- "IEEE Standard Framework for Reliability prediction of hardware", in IEEE Std 1413-2010 (Revision of IEEE Std 1413-1998), pp.1-20, 2010.
- K. C. Kapur, M. Pecht, "Reliability engineering", Wiley, 2014, ISBN: 978-1-118-84171-6.
- http://www.weibull.com.
- http://reliawiki.org.
- W. Nelson, "Accelerated testing: statistical models, test plans, and data analysis", Wiley, 2004, ISBN: 978-0-471-69736-7.
- W. Q. Meeker, L. A. Escobar, "Statistical methods for reliability data", Wiley, 1998, ISBN: 978-1-118-62597-2.
- P. O'Connor, A. Kleyner, "Practical reliability engineering", Wiley, 2012, ISBN: 978-0-470-97981-5.
- H. W. McLean, "HALT, HASS, and HASA explained", ASQ Quality Press, 2009, ISBN: 978-0-87389-766-2.
- K. L. Wong, D. L. Lindstrom, "Off the bathtub onto the roller-coaster curve", Proc. Ann. Reliability and Maintainability Symp., pp. 356-363, 1988.
- K. A. Gray, J. J. Paschkewitz, "Next generation HALT and HASS: robust design of electronics and systems", Wiley, 2016, ISBN: 978-1-118-70023-5.
- https://new.abb.com/drives/media/why-do-variable-speed-drives-fail-and-how-do-we-test-them.
- J. Lutz et al, "Semiconductor power devices: physics, characteristics, reliability", Springer, 2018, ISBN: 978-3-31970917
- A. Volke, and M. Hornkamp, "IGBT modules: Technologies, driver and application", Infineon Technologies AG, 2017, ISBN:978-3-000320-76-7.
- W. W. Sheng, R. P. Colino, "Power electronic modules: design and manufacture", CRC Press, 2004, ISBN: 978-0-849-32260-0.
- G. G. Harman, "Wire bonding in microelectronics: materials processes reliability and yield", McGraw Hill, 2010, ISBN: 978-0-070-32619-4.
- M. Ohring, L. Kasprzak, "Reliability and failure of electronic materials and devices", Elsevier, 2014, ISBN: 978-0-080-57552-0.
- Ciappa, M.: Selected failure mechanisms of modern power modules. Microelectron. Reliab. 42(45), 653-667 (2002) https://doi.org/10.1016/S0026-2714(02)00042-2
- C. Herold, "Power cycling capability of modules with SiC-diodes", Proc. 8th Int. Conference Integr. Power Electron. Syst., Nuremberg, Germany, pp.1-6, 2014.
- P. Salmen (2020) "Impact of load-pulse duration on power-cycling capability of SiC devices", 11th International Conference on Integrated Power Electronics Systems, Berlin, Germany, pp. 1-4.
- https://www.ispsd2020.com/exhibitor/document?file=39_1598866100.pdf
- K.P. Cheung (2018) "SiC Power MOSFET Gate Oxide Breakdown Reliability-Current Status,". in Proc.IRPS.
- R. Wu et al (2013) "Catastrophic failure and fault-tolerant design of IGBT power electronic converters-an overview", IECON, 39th IEEE Industrial Electronics Society, Vienna, pp. 507-513.
- Bahman, A.S.: Modeling of short-circuit-related thermal stress in aged IGBT modules. IEEE Trans. Ind. Appl. 53(5), 4788-4795 (2017) https://doi.org/10.1109/TIA.2017.2702594
- H. G. Eckel, L. Sack (1994) "Experimental investigation on the behaviour of IGBT at short-circuit during the on-state", Proce. IECON'94-20th IEEE Industrial electronics, Bologna, Italy, pp. 118-123.
- Papadopoulos, C., et al.: The influence of humidity on the high voltage blocking reliability of power IGBT modules and means of protection. Microelectron. Reliab. 88, 470-475 (2018) https://doi.org/10.1016/j.microrel.2018.07.130
- D.A. Gajewski et al (2019) "SiC Power Device Reliability", APEC.
- U. Schilling (2017) " Cosmic ray failures in power electronics", AN 17-003.
- T. Aichinger, and M. Schmidt (2020) "Gate-oxide reliability and failure-rate reduction of industrial SiC MOSFETs", in Proc. IRPS.
- B.J. Nel, S. Perinpanayagam, "A Brief Overview of SiC MOSFET Failure Modes and Design Reliability". Procedia CIRP, pp. 280-285, 2017.
- Gajewski, D.A., et al.: "SiC power device reliability," IEEE International Integrated Reliability Workshop (IIRW). South Lake Tahoe, CA (2016)
- D. Lichtenwalner (2015) "Performance and Reliability of SiC Power MOSFETs". MRS Advances.
- Stathis, J.H., Zafar, S.: The negative bias temperature instability in MOS devices: A review. Microelectron. Reliab. 46, 270-286 (2006) https://doi.org/10.1016/j.microrel.2005.08.001
- Schroder, D.K.: Negative bias temperature instability: What do we understand? Microelectron. Reliab. 44, 841-852 (2007) https://doi.org/10.1016/j.microrel.2003.12.001
- Puschkarsky, K.: Review on SiC MOSFETs High-voltage device reliability focusing on threshold voltage instability. IEEE Trans. Electron. Device. 66, 4604-4616 (2019) https://doi.org/10.1109/TED.2019.2938262
- Aichinger, T., Rescher, G., Pobegen, G.: Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs. Microelectron. Reliab. 80, 68-78 (2018) https://doi.org/10.1016/j.microrel.2017.11.020
- Dankovic, D., et al.: NBT stress-induced degradation and lifetime estimation in p-channel power VDMOSFETs. Microelectron. Reliab. 46(9-11), 1828-1833 (2006) https://doi.org/10.1016/j.microrel.2006.07.077
- Stojadinovic, N., et al.: NBTI and irradiation related degradation mechanisms in power VDMOS transistors. Microelectron. Reliab. 88-90, 135-141 (2018) https://doi.org/10.1016/j.microrel.2018.07.138
- Chen, C.L., et al.: "A new NBTI lifetime model (Ig-model) and an investigation on oxide thickness effect on NBTI degradation and recovery," IEEE International Reliability Physics Symposium Proceedings, pp. 741-742. San Jose, CA (2006)
- Kremp, S., Schilling, O.: Humidity robustness for high voltage power modules: limiting mechanisms and improvement of lifetime. Microelectron. Reliab. 88, 447-452 (2018) https://doi.org/10.1016/j.microrel.2018.06.043
- D. Cimmino et al (2019) High Voltage Temperature Humidity Bias Test (THB) customized system and methodologies for reliability assessment of power semiconductor devices", Microelectron. Reliab. vol. 100-101.
- M. Beier-Moebius, and J. Lutz (2017) "Breakdown of gate oxide of SiC-MOSFETs and Si-IGBTs under high temperature and high gate voltage,". in Proc. PCIM, pp. 365-372.
- Choi, U., Blaabjerg, F., Jorgensen, S.: Power cycling test methods for reliability assessment of power device modules in respect to temperature stress. IEEE Trans. Power. Electron. 33(3), 2531-2551 (2018) https://doi.org/10.1109/TPEL.2017.2690500
- Baba, S.: Active power cycling test bench for SiC power MOSFETs-principles, design, and implementation. IEEE Trans. Power. Electron. 36(3), 2661-2675 (2021) https://doi.org/10.1109/tpel.2020.3018535
- A. Morozumi et al (2001) "Reliability of power cycling for IGBT power semiconductor modules", Proceedings IEEE 36th Industry Applications Conference, vol. 3, pp. 1912-1918.
- Cova, P., Fantini, F.: On the effect of power cycling stress on IGBT modules. Microelectron. Reliab. 38, 1347-1352 (1998) https://doi.org/10.1016/S0026-2714(98)00081-X
- Smet, V., et al.: Ageing and failure modes of IGBT modules in high temperature cycling. IEEE Trans. Ind. Electron. 58(10), 4931-4941 (2011) https://doi.org/10.1109/TIE.2011.2114313
- Durand, C., Klingler, M., Coutellier, D., Naceur, H.: Power cycling reliability of power module: a survey. IEEE Trans. Device Mater. Rel. 16(1), 80-97 (2016) https://doi.org/10.1109/TDMR.2016.2516044
- C. Chen, F. Luo and Y. Kang (2017) "A review of SiC power module packaging: layout, material system and integration," in CPSS Trans. on Power Electron. Appl. 2(3):170-186. https://doi.org/10.24295/CPSSTPEA.2017.00017
- Lee, H., Smet, V., Tummala, R.: A review of SiC power module packaging technologies: challenges, advances, and emerging issues. IEEE. J. Emerg. Sel. Top. Power. Electron. 8(1), 239-255 (2020) https://doi.org/10.1109/jestpe.2019.2951801
- M. Treu, R. Rupp, G. Solkner (2010) "Reliability of SiC power devices and its influence on their commercialization-review, status, and remaining issues", IEEE International Reliability Physics Symposium, Anaheim, CA, pp. 156-161.
- "MILHDBK-217F: Military handbook reliability prediction of electronic equipment", 1991.
- Wang, H., Ma, K., Blaabjerg, F.: "Design for reliability of power electronic systems", , pp. 33-44. IECON 2012-38th IEEE Industrial Electronics Society, Montreal (2012)
- K. L. Wong, "What is wrong with the existing reliability prediction methods?", Qual. & Reliab. Eng. Int., vol. 6, no. 4, pp. 251-257, Sep-Oct 1990. https://doi.org/10.1002/qre.4680060407
- J. Gu, M. Pecht (2007) "Predicting the reliability of electronic products", 8th International Conference on Electronic Packaging Technology, Shanghai, pp. 1-8.
- Choi, U., Blaabjerg, F.: Separation of wear-out failure modes of IGBT modules in grid-connected inverter systems. IEEE. Trans. Power. Electron. 33(7), 6217-6223 (2018) https://doi.org/10.1109/tpel.2017.2750328
- Ceccarelli, L., et al.: Mission-profile-based lifetime prediction for a SiC mosfet power module using a multi-step condition-mapping simulation strategy. IEEE. Trans. Power. Electron. 34(10), 9698-9708 (2019) https://doi.org/10.1109/tpel.2019.2893636
- D. Smith et al (2011) "Reliability, maintainability and risk", Elsevier. ISBN: 978-0-081-02022-7.
- M. G. Pecht et al (2008) "Prognostics and health management of electronics", Wiley, Sep 2008, ISBN: 978-1-119-51532-6.
- K. Goebel et al (2017) "Prognostics: the science of making predictions". ISBN: 978-1539074830.
- Wang, B., et al.: Review of power semiconductor device reliability for power converters. CPSS. Trans. Power. Electron. Appl. 2(2), 101-117 (2017) https://doi.org/10.24295/CPSSTPEA.2017.00011
- Yang, S., et al.: Condition monitoring for device reliability in power electronic converters: a review. IEEE. Trans. Power. Electron. 25(11), 2734-2752 (2010) https://doi.org/10.1109/TPEL.2010.2049377
- https://www.mathworks.com/products/predictive-maintenance.html
- Oh, H., et al.: Physics-of-failure, condition monitoring, and prognostics of insulated gate Bipolar transistor modules: a review. IEEE Trans. Power. Electron. 30(5), 2413-2426 (2015) https://doi.org/10.1109/TPEL.2014.2346485
- Avenas, Y., et al.: Condition monitoring: a decade of proposed techniques. IEEE Trans. Ind. Electron. Mag. 9(4), 22-36 (2015) https://doi.org/10.1109/MIE.2015.2481564
- Choi, U.M., et al.: Reliability improvement of power converters by means of condition monitoring of IGBT modules. IEEE Trans. Power. Electron. 32(10), 7990-7997 (2017) https://doi.org/10.1109/TPEL.2016.2633578
- F. Gonzalez-Hernando et al (2018) "Online condition monitoring of bond wire degradation in inverter operation", IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4115-4121, IEEE.
- Kulkarni, C.S., et al.: Prognostics of power electronics, methods and validation experiments, pp. 194-199. Proc. IEEE AUTOTESTCON, Anaheim (2012)
- Patil, N., et al.: Precursor parameter identification for insulated gate bipolar transistor (IGBT) prognostics. IEEE Trans. Reliab. 58(2), 271-276 (2009) https://doi.org/10.1109/TR.2009.2020134
- J. P. Kozak et al, "Impact of accelerated stress-tests on SiC MOSFET precursor parameters: Preprint." Golden, CO: National Renewable Energy Laboratory. NREL/CP-5400-71331.
- Anderson, J.M., Cox, R.W.: On-line condition monitoring for MOSFET and IGBT switches in digitally controlled drives, pp. 3920-3927. IEEE Energy Conversion Congress and Exposition, Phoenix (2011)
- Smet, V., et al.: Evaluation of Vce monitoring as a real-time method to estimate aging of bond wire-IGBR modules stressed by power cycling. IEEE Trans. Ind. Electron. 60(7), 2760-2770 (2013) https://doi.org/10.1109/TIE.2012.2196894
- Hernando, F.G.: Wear-out condition monitoring of IGBT and MOSFET power modules in inverter operation. IEEE Trans. Ind. Appl. 55(6), 6184-6192 (2019) https://doi.org/10.1109/tia.2019.2935985
- Chen, H., et al.: Real-time temperature estimation for power MOSFETs considering thermal aging effects. IEEE Trans. Device Mater. Reliab. 14(1), 220-228 (2014) https://doi.org/10.1109/TDMR.2013.2292547
- Ma, K., et al.: Complete loss and thermal model of power semiconductors including device rating information. IEEE Trans. Power. Electron. 30(5), 2556-2569 (2015) https://doi.org/10.1109/TPEL.2014.2352341
- Liu, X., et al.: Online degradation state assessment methodology for multi-mode failures of insulated gate bipolar transistor. IEEE Access. 8, 69471-69481 (2020) https://doi.org/10.1109/access.2020.2984385
- Ugur, E., et al.: A new complete condition monitoring method for SiC power MOSFETs. IEEE Trans. Ind. Electron. 68(2), 1654-1664 (2021) https://doi.org/10.1109/tie.2020.2970668
- Pu, S., et al.: A practical on-board SiC MOSFET condition monitoring technique for aging detection. IEEE Trans. Ind. Appl. 56(3), 2828-2839 (2020) https://doi.org/10.1109/tia.2020.2980220
- Ortiz Gonzalez, J., Alatise, O.: Bias temperature instability and condition monitoring in SiC power MOSFETs. Microelectron. Reliab. 88-90, 557-562 (2018) https://doi.org/10.1016/j.microrel.2018.06.045
- Wang, P., et al.: Condition monitoring of SiC MOSFETs utilizing gate leakage current, pp. 1837-1843. IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans (2020)
- Griffo, A., et al.: Real-time measurement of temperature sensitive electrical parameters in SiC power MOSFETs. IEEE Trans. Ind. Electron. 65(3), 2663-2671 (2018) https://doi.org/10.1109/tie.2017.2739687
- Ugur, E., et al.: Degradation assessment and precursor identification for SiC MOSFETs under high temp cycling. IEEE Trans. Ind. Appl. 55(3), 2858-2867 (2019) https://doi.org/10.1109/tia.2019.2891214
- Ji, B., et al.: In situ diagnostics and prognostics of solder fatigue in IGBT modules for electric vehicle drives. IEEE Trans. Power. Electron. 30(3), 1535-1543 (2015) https://doi.org/10.1109/TPEL.2014.2318991
- Ji, B., et al.: In situ diagnostics and prognostics of wire bonding faults in IGBT modules for electric vehicle drives. IEEE Trans. Power. Electron. 28(12), 5568-5577 (2013) https://doi.org/10.1109/TPEL.2013.2251358
- Ni, Z., et al.: Overview of real-time lifetime prediction and extension for SiC power converters. IEEE Trans. Power. Electron. 35(8), 7765-7794 (2020) https://doi.org/10.1109/tpel.2019.2962503
- Chen, W., et al.: Data-driven approach for fault prognosis of SiC MOSFETs. IEEE Trans. Power. Electron. 35(4), 4048-4062 (2020) https://doi.org/10.1109/tpel.2019.2936850
- F Stella, G Pellegrino, E Armando (2018) Coordinated on-line junction temperature estimation and prognostic of SiC power modules. IEEE Energy Conversion Congress and Exposition (ECCE), Portland, pp. 1907-1913.
- Fang, X., et al.: A review of data-driven prognostic for IGBT remaining useful life. Chin J Electric Eng 4(3), 73-79 (2018) https://doi.org/10.23919/cjee.2018.8471292
- Haque, M.S., Choi, S., Baek, J.: Auxiliary particle filtering-based estimation of remaining useful life of IGBT. IEEE Trans. Ind. Electron. 65(3), 2693-2703 (2018) https://doi.org/10.1109/tie.2017.2740856
Cited by
- RUL Prediction of Switched Mode Power Supply Using a Kalman Filter Assisted Deep Neural Network vol.10, pp.1, 2022, https://doi.org/10.3390/pr10010055