DOI QR코드

DOI QR Code

Power electronic converter reliability and prognosis review focusing on power switch module failures

  • Abuelnaga, Ahmed (Department of Electrical and Computer Engineering, McMaster University) ;
  • Narimani, Mehdi (Department of Electrical and Computer Engineering, McMaster University) ;
  • Bahman, Amir Sajjad (Center of Reliable Power Electronics (CORPE), Aalborg University)
  • Received : 2020.10.24
  • Accepted : 2021.02.15
  • Published : 2021.06.20

Abstract

The current trend is to go for more electric systems that rely extensively on power electronics such as EVs/HEVs and electric aircrafts, along with an increased use of renewable energy resources and variable speed motor drives. However, some field failure reports have revealed that power electronic converters represent the weakest point in these systems. A significant percentage of system failures are due to power electronic converter failures, which compromises systems reliability. This raises questions regarding the validity of relying on the current power electronic converter technology to run mission-critical/must-to-be-safe systems. Although power electronic converter technology has reached an advanced level in terms of efficiency, power density, and control, extra work should be done when it comes to reliability. Reliability engineering brings performing failure data analysis, accelerated life testing, lifetime prediction, and the implementation of efficient maintenance and reliability improvement schemes into an integrated process. This process is meant to enhance the reliability of a product throughout its life cycle. This paper provides an overview of the application of the key aspects of new approaches in reliability engineering for power electronic converters. The focus of this paper is on power switch bond-wire modules since they are the most vulnerable component in power electronic converters. This paper also proposes two general schemes for condition-based remaining useful lifetime (RUL) that are discussed in detail.

Keywords

References

  1. Wang, J.H., Liserre, M., Blaabjerg, F.: Toward reliable power electronics: challenges, design tools, and opportunities. IEEE Ind. Electron. Mag. 7(2), 17-26 (2013) https://doi.org/10.1109/MIE.2013.2252958
  2. M. R. Wilkinson et al, "Reliability profiles (Methods)", Technical Report (Project Deliverable), ReliaWind Deliverable D.1.2.
  3. E. Wolfgang, "Examples for failures in power electronics systems", Proc. ECPE Tutorial Reliability of Power Electronic Systems, 2007.
  4. Moore, L.M., Post, H.N.: Five years of operating experience at alarge, utility-scale photovoltaic generating plant. J. Progr. Photovolt. Res. Appl. 16(3), 249-259 (2008) https://doi.org/10.1002/pip.800
  5. Byrne C, und Elektron-ikindustrie ZE, "Handbook for robustness validation of automotive electrical/electronic modules", ZVEI-German Electrical and Electronic Manufacturer's Assoc., 2013.
  6. Yang, S., et al.: An industry- based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441-1451 (2011) https://doi.org/10.1109/TIA.2011.2124436
  7. H. S.-H. Chung et al, "Reliability of Power Electronic Converter Systems", IET, 2015, ISBN: 978-1-84919-901-8.
  8. http://www.dfrsolutions.com.
  9. "IEEE Standard Framework for Reliability prediction of hardware", in IEEE Std 1413-2010 (Revision of IEEE Std 1413-1998), pp.1-20, 2010.
  10. K. C. Kapur, M. Pecht, "Reliability engineering", Wiley, 2014, ISBN: 978-1-118-84171-6.
  11. http://www.weibull.com.
  12. http://reliawiki.org.
  13. W. Nelson, "Accelerated testing: statistical models, test plans, and data analysis", Wiley, 2004, ISBN: 978-0-471-69736-7.
  14. W. Q. Meeker, L. A. Escobar, "Statistical methods for reliability data", Wiley, 1998, ISBN: 978-1-118-62597-2.
  15. P. O'Connor, A. Kleyner, "Practical reliability engineering", Wiley, 2012, ISBN: 978-0-470-97981-5.
  16. H. W. McLean, "HALT, HASS, and HASA explained", ASQ Quality Press, 2009, ISBN: 978-0-87389-766-2.
  17. K. L. Wong, D. L. Lindstrom, "Off the bathtub onto the roller-coaster curve", Proc. Ann. Reliability and Maintainability Symp., pp. 356-363, 1988.
  18. K. A. Gray, J. J. Paschkewitz, "Next generation HALT and HASS: robust design of electronics and systems", Wiley, 2016, ISBN: 978-1-118-70023-5.
  19. https://new.abb.com/drives/media/why-do-variable-speed-drives-fail-and-how-do-we-test-them.
  20. J. Lutz et al, "Semiconductor power devices: physics, characteristics, reliability", Springer, 2018, ISBN: 978-3-31970917
  21. A. Volke, and M. Hornkamp, "IGBT modules: Technologies, driver and application", Infineon Technologies AG, 2017, ISBN:978-3-000320-76-7.
  22. W. W. Sheng, R. P. Colino, "Power electronic modules: design and manufacture", CRC Press, 2004, ISBN: 978-0-849-32260-0.
  23. G. G. Harman, "Wire bonding in microelectronics: materials processes reliability and yield", McGraw Hill, 2010, ISBN: 978-0-070-32619-4.
  24. M. Ohring, L. Kasprzak, "Reliability and failure of electronic materials and devices", Elsevier, 2014, ISBN: 978-0-080-57552-0.
  25. Ciappa, M.: Selected failure mechanisms of modern power modules. Microelectron. Reliab. 42(45), 653-667 (2002) https://doi.org/10.1016/S0026-2714(02)00042-2
  26. C. Herold, "Power cycling capability of modules with SiC-diodes", Proc. 8th Int. Conference Integr. Power Electron. Syst., Nuremberg, Germany, pp.1-6, 2014.
  27. P. Salmen (2020) "Impact of load-pulse duration on power-cycling capability of SiC devices", 11th International Conference on Integrated Power Electronics Systems, Berlin, Germany, pp. 1-4.
  28. https://www.ispsd2020.com/exhibitor/document?file=39_1598866100.pdf
  29. K.P. Cheung (2018) "SiC Power MOSFET Gate Oxide Breakdown Reliability-Current Status,". in Proc.IRPS.
  30. R. Wu et al (2013) "Catastrophic failure and fault-tolerant design of IGBT power electronic converters-an overview", IECON, 39th IEEE Industrial Electronics Society, Vienna, pp. 507-513.
  31. Bahman, A.S.: Modeling of short-circuit-related thermal stress in aged IGBT modules. IEEE Trans. Ind. Appl. 53(5), 4788-4795 (2017) https://doi.org/10.1109/TIA.2017.2702594
  32. H. G. Eckel, L. Sack (1994) "Experimental investigation on the behaviour of IGBT at short-circuit during the on-state", Proce. IECON'94-20th IEEE Industrial electronics, Bologna, Italy, pp. 118-123.
  33. Papadopoulos, C., et al.: The influence of humidity on the high voltage blocking reliability of power IGBT modules and means of protection. Microelectron. Reliab. 88, 470-475 (2018) https://doi.org/10.1016/j.microrel.2018.07.130
  34. D.A. Gajewski et al (2019) "SiC Power Device Reliability", APEC.
  35. U. Schilling (2017) " Cosmic ray failures in power electronics", AN 17-003.
  36. T. Aichinger, and M. Schmidt (2020) "Gate-oxide reliability and failure-rate reduction of industrial SiC MOSFETs", in Proc. IRPS.
  37. B.J. Nel, S. Perinpanayagam, "A Brief Overview of SiC MOSFET Failure Modes and Design Reliability". Procedia CIRP, pp. 280-285, 2017.
  38. Gajewski, D.A., et al.: "SiC power device reliability," IEEE International Integrated Reliability Workshop (IIRW). South Lake Tahoe, CA (2016)
  39. D. Lichtenwalner (2015) "Performance and Reliability of SiC Power MOSFETs". MRS Advances.
  40. Stathis, J.H., Zafar, S.: The negative bias temperature instability in MOS devices: A review. Microelectron. Reliab. 46, 270-286 (2006) https://doi.org/10.1016/j.microrel.2005.08.001
  41. Schroder, D.K.: Negative bias temperature instability: What do we understand? Microelectron. Reliab. 44, 841-852 (2007) https://doi.org/10.1016/j.microrel.2003.12.001
  42. Puschkarsky, K.: Review on SiC MOSFETs High-voltage device reliability focusing on threshold voltage instability. IEEE Trans. Electron. Device. 66, 4604-4616 (2019) https://doi.org/10.1109/TED.2019.2938262
  43. Aichinger, T., Rescher, G., Pobegen, G.: Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs. Microelectron. Reliab. 80, 68-78 (2018) https://doi.org/10.1016/j.microrel.2017.11.020
  44. Dankovic, D., et al.: NBT stress-induced degradation and lifetime estimation in p-channel power VDMOSFETs. Microelectron. Reliab. 46(9-11), 1828-1833 (2006) https://doi.org/10.1016/j.microrel.2006.07.077
  45. Stojadinovic, N., et al.: NBTI and irradiation related degradation mechanisms in power VDMOS transistors. Microelectron. Reliab. 88-90, 135-141 (2018) https://doi.org/10.1016/j.microrel.2018.07.138
  46. Chen, C.L., et al.: "A new NBTI lifetime model (Ig-model) and an investigation on oxide thickness effect on NBTI degradation and recovery," IEEE International Reliability Physics Symposium Proceedings, pp. 741-742. San Jose, CA (2006)
  47. Kremp, S., Schilling, O.: Humidity robustness for high voltage power modules: limiting mechanisms and improvement of lifetime. Microelectron. Reliab. 88, 447-452 (2018) https://doi.org/10.1016/j.microrel.2018.06.043
  48. D. Cimmino et al (2019) High Voltage Temperature Humidity Bias Test (THB) customized system and methodologies for reliability assessment of power semiconductor devices", Microelectron. Reliab. vol. 100-101.
  49. M. Beier-Moebius, and J. Lutz (2017) "Breakdown of gate oxide of SiC-MOSFETs and Si-IGBTs under high temperature and high gate voltage,". in Proc. PCIM, pp. 365-372.
  50. Choi, U., Blaabjerg, F., Jorgensen, S.: Power cycling test methods for reliability assessment of power device modules in respect to temperature stress. IEEE Trans. Power. Electron. 33(3), 2531-2551 (2018) https://doi.org/10.1109/TPEL.2017.2690500
  51. Baba, S.: Active power cycling test bench for SiC power MOSFETs-principles, design, and implementation. IEEE Trans. Power. Electron. 36(3), 2661-2675 (2021) https://doi.org/10.1109/tpel.2020.3018535
  52. A. Morozumi et al (2001) "Reliability of power cycling for IGBT power semiconductor modules", Proceedings IEEE 36th Industry Applications Conference, vol. 3, pp. 1912-1918.
  53. Cova, P., Fantini, F.: On the effect of power cycling stress on IGBT modules. Microelectron. Reliab. 38, 1347-1352 (1998) https://doi.org/10.1016/S0026-2714(98)00081-X
  54. Smet, V., et al.: Ageing and failure modes of IGBT modules in high temperature cycling. IEEE Trans. Ind. Electron. 58(10), 4931-4941 (2011) https://doi.org/10.1109/TIE.2011.2114313
  55. Durand, C., Klingler, M., Coutellier, D., Naceur, H.: Power cycling reliability of power module: a survey. IEEE Trans. Device Mater. Rel. 16(1), 80-97 (2016) https://doi.org/10.1109/TDMR.2016.2516044
  56. C. Chen, F. Luo and Y. Kang (2017) "A review of SiC power module packaging: layout, material system and integration," in CPSS Trans. on Power Electron. Appl. 2(3):170-186. https://doi.org/10.24295/CPSSTPEA.2017.00017
  57. Lee, H., Smet, V., Tummala, R.: A review of SiC power module packaging technologies: challenges, advances, and emerging issues. IEEE. J. Emerg. Sel. Top. Power. Electron. 8(1), 239-255 (2020) https://doi.org/10.1109/jestpe.2019.2951801
  58. M. Treu, R. Rupp, G. Solkner (2010) "Reliability of SiC power devices and its influence on their commercialization-review, status, and remaining issues", IEEE International Reliability Physics Symposium, Anaheim, CA, pp. 156-161.
  59. "MILHDBK-217F: Military handbook reliability prediction of electronic equipment", 1991.
  60. Wang, H., Ma, K., Blaabjerg, F.: "Design for reliability of power electronic systems", , pp. 33-44. IECON 2012-38th IEEE Industrial Electronics Society, Montreal (2012)
  61. K. L. Wong, "What is wrong with the existing reliability prediction methods?", Qual. & Reliab. Eng. Int., vol. 6, no. 4, pp. 251-257, Sep-Oct 1990. https://doi.org/10.1002/qre.4680060407
  62. J. Gu, M. Pecht (2007) "Predicting the reliability of electronic products", 8th International Conference on Electronic Packaging Technology, Shanghai, pp. 1-8.
  63. Choi, U., Blaabjerg, F.: Separation of wear-out failure modes of IGBT modules in grid-connected inverter systems. IEEE. Trans. Power. Electron. 33(7), 6217-6223 (2018) https://doi.org/10.1109/tpel.2017.2750328
  64. Ceccarelli, L., et al.: Mission-profile-based lifetime prediction for a SiC mosfet power module using a multi-step condition-mapping simulation strategy. IEEE. Trans. Power. Electron. 34(10), 9698-9708 (2019) https://doi.org/10.1109/tpel.2019.2893636
  65. D. Smith et al (2011) "Reliability, maintainability and risk", Elsevier. ISBN: 978-0-081-02022-7.
  66. M. G. Pecht et al (2008) "Prognostics and health management of electronics", Wiley, Sep 2008, ISBN: 978-1-119-51532-6.
  67. K. Goebel et al (2017) "Prognostics: the science of making predictions". ISBN: 978-1539074830.
  68. Wang, B., et al.: Review of power semiconductor device reliability for power converters. CPSS. Trans. Power. Electron. Appl. 2(2), 101-117 (2017) https://doi.org/10.24295/CPSSTPEA.2017.00011
  69. Yang, S., et al.: Condition monitoring for device reliability in power electronic converters: a review. IEEE. Trans. Power. Electron. 25(11), 2734-2752 (2010) https://doi.org/10.1109/TPEL.2010.2049377
  70. https://www.mathworks.com/products/predictive-maintenance.html
  71. Oh, H., et al.: Physics-of-failure, condition monitoring, and prognostics of insulated gate Bipolar transistor modules: a review. IEEE Trans. Power. Electron. 30(5), 2413-2426 (2015) https://doi.org/10.1109/TPEL.2014.2346485
  72. Avenas, Y., et al.: Condition monitoring: a decade of proposed techniques. IEEE Trans. Ind. Electron. Mag. 9(4), 22-36 (2015) https://doi.org/10.1109/MIE.2015.2481564
  73. Choi, U.M., et al.: Reliability improvement of power converters by means of condition monitoring of IGBT modules. IEEE Trans. Power. Electron. 32(10), 7990-7997 (2017) https://doi.org/10.1109/TPEL.2016.2633578
  74. F. Gonzalez-Hernando et al (2018) "Online condition monitoring of bond wire degradation in inverter operation", IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4115-4121, IEEE.
  75. Kulkarni, C.S., et al.: Prognostics of power electronics, methods and validation experiments, pp. 194-199. Proc. IEEE AUTOTESTCON, Anaheim (2012)
  76. Patil, N., et al.: Precursor parameter identification for insulated gate bipolar transistor (IGBT) prognostics. IEEE Trans. Reliab. 58(2), 271-276 (2009) https://doi.org/10.1109/TR.2009.2020134
  77. J. P. Kozak et al, "Impact of accelerated stress-tests on SiC MOSFET precursor parameters: Preprint." Golden, CO: National Renewable Energy Laboratory. NREL/CP-5400-71331.
  78. Anderson, J.M., Cox, R.W.: On-line condition monitoring for MOSFET and IGBT switches in digitally controlled drives, pp. 3920-3927. IEEE Energy Conversion Congress and Exposition, Phoenix (2011)
  79. Smet, V., et al.: Evaluation of Vce monitoring as a real-time method to estimate aging of bond wire-IGBR modules stressed by power cycling. IEEE Trans. Ind. Electron. 60(7), 2760-2770 (2013) https://doi.org/10.1109/TIE.2012.2196894
  80. Hernando, F.G.: Wear-out condition monitoring of IGBT and MOSFET power modules in inverter operation. IEEE Trans. Ind. Appl. 55(6), 6184-6192 (2019) https://doi.org/10.1109/tia.2019.2935985
  81. Chen, H., et al.: Real-time temperature estimation for power MOSFETs considering thermal aging effects. IEEE Trans. Device Mater. Reliab. 14(1), 220-228 (2014) https://doi.org/10.1109/TDMR.2013.2292547
  82. Ma, K., et al.: Complete loss and thermal model of power semiconductors including device rating information. IEEE Trans. Power. Electron. 30(5), 2556-2569 (2015) https://doi.org/10.1109/TPEL.2014.2352341
  83. Liu, X., et al.: Online degradation state assessment methodology for multi-mode failures of insulated gate bipolar transistor. IEEE Access. 8, 69471-69481 (2020) https://doi.org/10.1109/access.2020.2984385
  84. Ugur, E., et al.: A new complete condition monitoring method for SiC power MOSFETs. IEEE Trans. Ind. Electron. 68(2), 1654-1664 (2021) https://doi.org/10.1109/tie.2020.2970668
  85. Pu, S., et al.: A practical on-board SiC MOSFET condition monitoring technique for aging detection. IEEE Trans. Ind. Appl. 56(3), 2828-2839 (2020) https://doi.org/10.1109/tia.2020.2980220
  86. Ortiz Gonzalez, J., Alatise, O.: Bias temperature instability and condition monitoring in SiC power MOSFETs. Microelectron. Reliab. 88-90, 557-562 (2018) https://doi.org/10.1016/j.microrel.2018.06.045
  87. Wang, P., et al.: Condition monitoring of SiC MOSFETs utilizing gate leakage current, pp. 1837-1843. IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans (2020)
  88. Griffo, A., et al.: Real-time measurement of temperature sensitive electrical parameters in SiC power MOSFETs. IEEE Trans. Ind. Electron. 65(3), 2663-2671 (2018) https://doi.org/10.1109/tie.2017.2739687
  89. Ugur, E., et al.: Degradation assessment and precursor identification for SiC MOSFETs under high temp cycling. IEEE Trans. Ind. Appl. 55(3), 2858-2867 (2019) https://doi.org/10.1109/tia.2019.2891214
  90. Ji, B., et al.: In situ diagnostics and prognostics of solder fatigue in IGBT modules for electric vehicle drives. IEEE Trans. Power. Electron. 30(3), 1535-1543 (2015) https://doi.org/10.1109/TPEL.2014.2318991
  91. Ji, B., et al.: In situ diagnostics and prognostics of wire bonding faults in IGBT modules for electric vehicle drives. IEEE Trans. Power. Electron. 28(12), 5568-5577 (2013) https://doi.org/10.1109/TPEL.2013.2251358
  92. Ni, Z., et al.: Overview of real-time lifetime prediction and extension for SiC power converters. IEEE Trans. Power. Electron. 35(8), 7765-7794 (2020) https://doi.org/10.1109/tpel.2019.2962503
  93. Chen, W., et al.: Data-driven approach for fault prognosis of SiC MOSFETs. IEEE Trans. Power. Electron. 35(4), 4048-4062 (2020) https://doi.org/10.1109/tpel.2019.2936850
  94. F Stella, G Pellegrino, E Armando (2018) Coordinated on-line junction temperature estimation and prognostic of SiC power modules. IEEE Energy Conversion Congress and Exposition (ECCE), Portland, pp. 1907-1913.
  95. Fang, X., et al.: A review of data-driven prognostic for IGBT remaining useful life. Chin J Electric Eng 4(3), 73-79 (2018) https://doi.org/10.23919/cjee.2018.8471292
  96. Haque, M.S., Choi, S., Baek, J.: Auxiliary particle filtering-based estimation of remaining useful life of IGBT. IEEE Trans. Ind. Electron. 65(3), 2693-2703 (2018) https://doi.org/10.1109/tie.2017.2740856

Cited by

  1. RUL Prediction of Switched Mode Power Supply Using a Kalman Filter Assisted Deep Neural Network vol.10, pp.1, 2022, https://doi.org/10.3390/pr10010055