DOI QR코드

DOI QR Code

Sizing of a tube inlet orifice of a once-through steam generator to suppress the parallel channel instability

  • 투고 : 2021.03.30
  • 심사 : 2021.06.02
  • 발행 : 2021.11.25

초록

Sizing the tube inlet orifice of a Once-Through Steam Generator (OTSG) is important to protect the integrity of the tubes from thermal cycling and vibration wear. In this study, a new sizing criterion is proposed for the tube inlet orifice to suppress the parallel channel instability in an OTSG. A perturbation method is used to capture the essential parts of the thermal-hydraulic phenomena of the parallel channel instability. The perturbation model of the heat transfer regime boundaries is identified as a missing part in existing models for sizing the OTSG tube inlet orifice. Limitations and deficiency of the existing models are identified and the reasons for the limitations are explained. The newly proposed model can be utilized to size the tube inlet orifice to suppress the parallel channel instability without excessive engineering margin.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (Ministry of Science and ICT) (No. NRF-2020M2D7A1079178).

참고문헌

  1. M. Xiao, X.J. Chen, M.Y. Zhang, T.N. Veziroglu, S. Kakac, A multivariable linear investigation of two-phase flow instabilities in parallel boiling channels under high pressure, Int. J. Multiphas. Flow 19 (1) (1993) 65-77. https://doi.org/10.1016/0301-9322(93)90023-N
  2. G.V. Durga Prasad, M. Pandey, M.S. Kalra, Review of research on flow instabilities in natural circulation boiling systems, Prog. Nucl. Energy 49 (2007) 429-451. https://doi.org/10.1016/j.pnucene.2007.06.002
  3. J.A. Boure, Review of two-phase flow instability, Nucl. Eng. Des. 25 (1973) 165-192. https://doi.org/10.1016/0029-5493(73)90043-5
  4. K. Fukuda, S. Hasegawa, Analysis on two-phase flow instability in parallel multichannels, J. Nucl. Sci. Technol. 16 (3) (1979) 190-199. https://doi.org/10.1080/18811248.1979.9730889
  5. L.C. Ruspini, C.P. Marcel, A. Clausse, Two-phase flow instabilities: a review, Int. J. Heat Mass Tran. 71 (2014) 521-548. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.047
  6. M. Ishii, Thermally Induced Flow Instabilities in Two-phase Mixtures in Thermal Equilibrium, Ph.D. Thesis, GIT, 1971.
  7. L.A. Belblidia, Density-wave oscillations, Ann. Nucl. Energy 6 (1979) 425-444. https://doi.org/10.1016/0306-4549(79)90039-2
  8. Dag Stromsvag, Fundamental Mechanisms of Density Wave Oscillations and the Effect of Subcooling, NTNU, 2004.
  9. P. Saha, An experimental investigation of the thermally induced flow oscillations in two-phase systems, J. Heat Tran. (1976) 616-622.
  10. K. Takitani, T. Takemura, Density wave instability in once-through boiling flow system, (I) Experiment, J. Nucl. Sci. Technol. 15 (5) (1978) 355-364. https://doi.org/10.1080/18811248.1978.9735521
  11. K. Takitani, Density wave instability in once-through boiling flow system, (II) Lumped parameter model with moving boundaries, J. Nucl. Sci. Technol. 15 (6) (1978) 389-399. https://doi.org/10.1080/18811248.1978.9735526
  12. K. Takitani, K. Sakano, Density wave instability in once-through boiling flow system, (III) Distributed parameter model, J. Nucl. Sci. Technol. 16 (1) (1979) 16-29. https://doi.org/10.1080/18811248.1979.9730866
  13. G. Guido, et al., Density-wave oscillations in parallel channels - an analytical approach, Nucl. Eng. Des. 125 (1991) 121-136. https://doi.org/10.1016/0029-5493(91)90072-P
  14. R.T. Lahey Jr., The Thermal-Hydraulics of a Boiling Water Nuclear Reactor, second ed., ANS, 1993.
  15. M. Colombo, A. Cammi, D. Papini, M.E. Ricotti, RELAP5/MOD3.3 study on density wave instabilities in single channel and two parallel channels, Prog. Nucl. Energy 56 (2012) 15-23. https://doi.org/10.1016/j.pnucene.2011.12.002
  16. G. Xia, M. Peng, Y. Guo, Research of two-phase flow instability in parallel narrow multi-channel system, Ann. Nucl. Energy 48 (2012) 1-16. https://doi.org/10.1016/j.anucene.2012.05.014
  17. R. Xu, P. Song, D. Zhang, W. Tian, S. Qiu, G. Su, Numerical analysis on flow instability of parallel channels in steam generator for sodium-cooled fast reactor, Int. J. Energy Res. (2020) 1-14.
  18. Q. Liang, X. Li, Y. Su, X. Wu, Frequency Domain Analysis of Two-phase Flow Instabilities in a Helical Tube once through Steam Generator for HTGR vol. 168, Applied Thermal Eng., 2020.
  19. P.A. Petrov, Hydrodynamics of Once-Through Boiler, 1960. Gosenergoizdat (in Russian).
  20. V.A. Babin, Final Report on Problems of Ensuring the Hydrodynamic Stability of the Once-Through Steam Generators in Normal Operating Modes, OKBM, 2004.
  21. H.O. Kang, J.K. Seo, Y.W. Kim, J. Yoon, K.K. Kim, Structural integrity confirmation of a once-through steam generator from the viewpoint of flow instability, J. Nucl. Sci. Technol. 44 (1) (2007) 64-72. https://doi.org/10.3327/jnst.44.64
  22. H.S. Han, Rayan Alshehri, H.O. Kang, J. Yoon, Y.I. Kim, S.J. Kim, Tube inlet orifice design of a once-through steam generator for flow stabilization, J. Mech. Sci. Technol. 33 (8) (2019) 3841-3849. https://doi.org/10.1007/s12206-019-0727-x
  23. Huaiming Ju, K. Zuo, Z. Liu, Y. Xu, Two phase flow stability in HTR-10 steam generator, Tsinghua Sci. Technol. 6 (1) (2001) 75-79. ISSN 1007-0214, 16/20.
  24. H. Nariai, M. Kobayashi, T. Matsuoka, Y. Ito, I. Aya, Boiler dynamics and control in nuclear power stations 2, Ch. 14 Flow instabilities in a once-through steam genertor, in: Proceedings of the Second International Conference Held in Bournemouth, The British Nuclear Energy Society, London, 1980, pp. 23-25. October, 1979.
  25. K. Fukuda, T. Kobori, Classification of two-phase flow instability by density wave oscillation model, J. Nucl. Sci. Technol. 16 (2) (1979) 95-108. https://doi.org/10.1080/18811248.1979.9730878
  26. P.K. Vijayan, A.K. Nayak, ANNEX 7 Introduction to Instabilities in Natural Circulation systems, IAEA-TECDOC-1474 Natural Circulation in Water Cooled Nuclear Power Plants, IAEA, 2005.
  27. R.T. Lahey Jr., M.Z. Podowski, On the analysis of various instabilities in two-phase flows, Multiphas. Sci. Technol. 4 (1989) 183-370. https://doi.org/10.1615/MultScienTechn.v4.i1-4.30
  28. N.E. Todreas, M.S. Kazimi, Nuclear Systems I: Thermal Hydraulic Fundamentals, second ed., Hemisphere Publishing Co., 2011.
  29. Juhyeon Yoon, J.P. Kim, H.Y. Kim, D.J. Lee, M.H. Chang, Development of a computer code, ONCESG, for the thermal-hydraulic design of a once-through steam generator, J. Nucl. Sci. Technol. 37 (5) (2000) 445-454. https://doi.org/10.3327/jnst.37.445
  30. H.K. Kim, S.H. Kim, Y.J. Chung, H.S. Kim, Thermal-hydraulic analysis of SMART steam generator tube rupture using TASS/SMR-S code, Ann. Nucl. Energy 55 (2013) 331-340. https://doi.org/10.1016/j.anucene.2013.01.007
  31. Y.W. Kim, J.I. Kim, D.O. Kim, J.S. Park, H.S. Lee, Basic design report for SMART steam generator, KAERI/TR-2127, INIS Issue 47 (2002) http://inis.iaea.org/, INIS Vol. 35.
  32. M.H. Chang, J.W. Yeo, Q.S. Zee, D.J. Lee, K.B. Park, I.S. Koo, H.C. Kim, J.I. Kim, Basic design report of SMART, INIS Issue 36 (2002). INIS Vol. 34, http://inis.iaea.org/.
  33. P.K. Vijayan, A.P. Patil, D.S. Pilkhwal, D. Saha, V. Venkat Raj, An assessment of pressure drop and void fraction correlations with data from two-phase natural circulation loops, Heat Mass Tran. 36 (2000) 541-548. https://doi.org/10.1007/s002310000108