References
- R. Vilim, R. Klann, Radtrac: a system for detecting, localizing, and tracking radioactive sources in real time, Nucl. Technol. 168 (2009) 61-73. https://doi.org/10.13182/nt168-61
- N.S. Rao, et al., Identification of low-level point radiation sources using a sensor network, in: Proceedings of the 7th International Conference on Information Processing in Sensor Networks, IEEE Computer Society, 2008.
- R.J. Nemzek, et al., Distributed sensor networks for detection of mobile radioactive sources, IEEE Trans. Nucl. Sci. 51 (2004) 1693-1700. https://doi.org/10.1109/TNS.2004.832582
- H.E. Baidoo-Williams, et al., On the gradient descent localization of radioactive sources, IEEE Signal Process. Lett. 20 (2013) 1046-1049. https://doi.org/10.1109/LSP.2013.2279499
- P. Kump, et al., Detection of shielded radionuclides from weak and poorly resolved spectra using group positive RIVAL, Radiat. Meas. 48 (2013) 18-28. https://doi.org/10.1016/j.radmeas.2012.11.002
- A. Gunatilaka, B. Ristic, R. Gailis, On localisation of a radiological point source, in: 2007 Information, Decision and Control, IEEE, 2007.
- M. Chandy, C. Pilotto, R. McLean, Networked sensing systems for detecting people carrying radioactive material, in: 2008 5th International Conference on Networked Sensing Systems, IEEE, 2008.
- B. Deb, Iterative estimation of location and trajectory of radioactive sources with a networked system of detectors, IEEE Trans. Nucl. Sci. 60 (2013) 1315-1326. https://doi.org/10.1109/TNS.2013.2247060
- E.-w. Bai, et al., Maximum likelihood localization of radioactive sources against a highly fluctuating background, IEEE Trans. Nucl. Sci. 62 (2015) 3274-3282. https://doi.org/10.1109/TNS.2015.2497327
- A.H. Liu, J.J. Bunn, K.M. Chandy, Sensor networks for the detection and tracking of radiation and other threats in cities, in: Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks, IEEE, 2011.
- M. Morelande, B. Ristic, A. Gunatilaka, Detection and parameter estimation of multiple radioactive sources, in: 2007 10th International Conference on Information Fusion, IEEE, 2007.
- M.R. Morelande, B. Ristic, Radiological source detection and localisation using Bayesian techniques, IEEE Trans. Signal Process. 57 (2009) 4220-4231. https://doi.org/10.1109/TSP.2009.2026618
- J.-I. Byun, H.-Y. Choi, J.-Y. Yun, A 4-point in-situ method to locate a discrete gamma-ray source in 3-D space, Appl. Radiat. Isot. 68 (2010) 370-377. https://doi.org/10.1016/j.apradiso.2009.10.054
- A.F. Alwars, F. Rahmani, Conceptual design of an orphan gamma source finder, Nucl. Instrum Meth. A 922 (2019) 235-242. https://doi.org/10.1016/j.nima.2018.12.029
- R.A. Cortez, et al., Smart radiation sensor management, IEEE Robot. Autom. Mag. 15 (2008) 85-93. https://doi.org/10.1109/MRA.2008.928590
- M.K. Sharma, A.B. Alajo, H.K. Lee, Three-dimensional localization of low activity gamma-ray sources in real-time scenarios, Nucl. Instrum. Meth. A 813 (2016) 132-138. https://doi.org/10.1016/j.nima.2016.01.001
- M. Hutchinson, H. Oh, W.-H. Chen, Adaptive Bayesian sensor motion planning for hazardous source term reconstruction, IFAC-PapersOnLine 50 (2017) 2812-2817. https://doi.org/10.1016/j.ifacol.2017.08.632
- B. Ristic, M. Morelande, A. Gunatilaka, Information driven search for point sources of gamma radiation, Signal Process. 90 (2010) 1225-1239. https://doi.org/10.1016/j.sigpro.2009.10.006
- A. Kumar, et al., Automated sequential search for weak radiation sources, in: 2006 14th Mediterranean Conference on Control and Automation, IEEE, 2006.
- C.G. Mayhew, R.G. Sanfelice, A.R. Teel, Robust source-seeking hybrid controllers for autonomous vehicles, in: 2007 American Control Conference, IEEE, 2007.
- Z. Liu, S. Abbaszadeh, Double Q-learning for radiation source detection, Sensors 19 (2019) 960. https://doi.org/10.3390/s19040960
- P. Olmos, et al., Application of neural network techniques in gamma spectroscopy, Nucl. Instrum. Meth. A 312 (1992) 167-173. https://doi.org/10.1016/0168-9002(92)90148-W
- J. He, et al., Rapid radionuclide identification algorithm based on the discrete cosine transform and BP neural network, Ann. Nucl. Energy 112 (2018) 1-8. https://doi.org/10.1016/j.anucene.2017.09.032
- J.-P. He, et al., Spectrometry analysis based on approximation coefficients and deep belief networks, Nucl. Sci. Tech. 29 (2018) 69. https://doi.org/10.1007/s41365-018-0402-4
- J. Allison, et al., Geant4 developments and applications. Communications of the ACMIEEE trans, Signal Process IEEE Trans. Nucl. Sci. 53 (2006) 270-278. https://doi.org/10.1109/TNS.2006.869826
- T. Liu, et al., Implementation of Training Convolutional Neural Networks, 2015 arXiv preprint arXiv:1506.01195.
- J. Wu, Introduction to Convolutional Neural Networks, vol. 5, National Key Lab for Novel Software Technology. Nanjing University, China, 2017, p. 23.
- Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436-444. https://doi.org/10.1038/nature14539
- A. Gulli, S. Pal, Deep Learning with Keras, Packt Publishing Ltd, 2017.
- F. Chollet, Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek, MITP-Verlags GmbH & Co. KG, 2018.
- I. Vasilev, Python Deep Learning: Exploring Deep Learning Techniques and Neural Network Architectures with PyTorch, Keras, and TensorFlow, 2019.
- R. Atienza, Advanced Deep Learning with Keras: Apply Deep Learning Techniques, Autoencoders, GANs, Variational Autoencoders, Deep Reinforcement Learning, Policy Gradients, and More, Packt Publishing Ltd, 2018.