DOI QR코드

DOI QR Code

Lost gamma source detection algorithm based on convolutional neural network

  • Fathi, Atefeh (Department of Physics, K.N. Toosi University of Technology) ;
  • Masoudi, S. Farhad (Department of Physics, K.N. Toosi University of Technology)
  • Received : 2020.11.26
  • Accepted : 2021.05.13
  • Published : 2021.11.25

Abstract

Based on the convolutional neural network (CNN), a novel technique is investigated for lost gamma source detection in a room. The CNN is trained with the result of a GEANT4 simulation containing a gamma source inside a meshed room. The dataset for the training process is the deposited energy in the meshes of different n-step paths. The neural network is optimized with parameters such as the number of input data and path length. Based on the proposed method, the place of the gamma source can be recognized with reasonable accuracy without human intervention. The results show that only by 5 measurements of the energy deposited in a 5-step path, (5 sequential points 50 cm apart within 1600 meshes), the gamma source location can be estimated with 94% accuracy. Also, the method is tested for the room geometry containing the interior walls. The results show 90% accuracy with the energy deposition measurement in the meshes of a 5-step path.

Keywords

References

  1. R. Vilim, R. Klann, Radtrac: a system for detecting, localizing, and tracking radioactive sources in real time, Nucl. Technol. 168 (2009) 61-73. https://doi.org/10.13182/nt168-61
  2. N.S. Rao, et al., Identification of low-level point radiation sources using a sensor network, in: Proceedings of the 7th International Conference on Information Processing in Sensor Networks, IEEE Computer Society, 2008.
  3. R.J. Nemzek, et al., Distributed sensor networks for detection of mobile radioactive sources, IEEE Trans. Nucl. Sci. 51 (2004) 1693-1700. https://doi.org/10.1109/TNS.2004.832582
  4. H.E. Baidoo-Williams, et al., On the gradient descent localization of radioactive sources, IEEE Signal Process. Lett. 20 (2013) 1046-1049. https://doi.org/10.1109/LSP.2013.2279499
  5. P. Kump, et al., Detection of shielded radionuclides from weak and poorly resolved spectra using group positive RIVAL, Radiat. Meas. 48 (2013) 18-28. https://doi.org/10.1016/j.radmeas.2012.11.002
  6. A. Gunatilaka, B. Ristic, R. Gailis, On localisation of a radiological point source, in: 2007 Information, Decision and Control, IEEE, 2007.
  7. M. Chandy, C. Pilotto, R. McLean, Networked sensing systems for detecting people carrying radioactive material, in: 2008 5th International Conference on Networked Sensing Systems, IEEE, 2008.
  8. B. Deb, Iterative estimation of location and trajectory of radioactive sources with a networked system of detectors, IEEE Trans. Nucl. Sci. 60 (2013) 1315-1326. https://doi.org/10.1109/TNS.2013.2247060
  9. E.-w. Bai, et al., Maximum likelihood localization of radioactive sources against a highly fluctuating background, IEEE Trans. Nucl. Sci. 62 (2015) 3274-3282. https://doi.org/10.1109/TNS.2015.2497327
  10. A.H. Liu, J.J. Bunn, K.M. Chandy, Sensor networks for the detection and tracking of radiation and other threats in cities, in: Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks, IEEE, 2011.
  11. M. Morelande, B. Ristic, A. Gunatilaka, Detection and parameter estimation of multiple radioactive sources, in: 2007 10th International Conference on Information Fusion, IEEE, 2007.
  12. M.R. Morelande, B. Ristic, Radiological source detection and localisation using Bayesian techniques, IEEE Trans. Signal Process. 57 (2009) 4220-4231. https://doi.org/10.1109/TSP.2009.2026618
  13. J.-I. Byun, H.-Y. Choi, J.-Y. Yun, A 4-point in-situ method to locate a discrete gamma-ray source in 3-D space, Appl. Radiat. Isot. 68 (2010) 370-377. https://doi.org/10.1016/j.apradiso.2009.10.054
  14. A.F. Alwars, F. Rahmani, Conceptual design of an orphan gamma source finder, Nucl. Instrum Meth. A 922 (2019) 235-242. https://doi.org/10.1016/j.nima.2018.12.029
  15. R.A. Cortez, et al., Smart radiation sensor management, IEEE Robot. Autom. Mag. 15 (2008) 85-93. https://doi.org/10.1109/MRA.2008.928590
  16. M.K. Sharma, A.B. Alajo, H.K. Lee, Three-dimensional localization of low activity gamma-ray sources in real-time scenarios, Nucl. Instrum. Meth. A 813 (2016) 132-138. https://doi.org/10.1016/j.nima.2016.01.001
  17. M. Hutchinson, H. Oh, W.-H. Chen, Adaptive Bayesian sensor motion planning for hazardous source term reconstruction, IFAC-PapersOnLine 50 (2017) 2812-2817. https://doi.org/10.1016/j.ifacol.2017.08.632
  18. B. Ristic, M. Morelande, A. Gunatilaka, Information driven search for point sources of gamma radiation, Signal Process. 90 (2010) 1225-1239. https://doi.org/10.1016/j.sigpro.2009.10.006
  19. A. Kumar, et al., Automated sequential search for weak radiation sources, in: 2006 14th Mediterranean Conference on Control and Automation, IEEE, 2006.
  20. C.G. Mayhew, R.G. Sanfelice, A.R. Teel, Robust source-seeking hybrid controllers for autonomous vehicles, in: 2007 American Control Conference, IEEE, 2007.
  21. Z. Liu, S. Abbaszadeh, Double Q-learning for radiation source detection, Sensors 19 (2019) 960. https://doi.org/10.3390/s19040960
  22. P. Olmos, et al., Application of neural network techniques in gamma spectroscopy, Nucl. Instrum. Meth. A 312 (1992) 167-173. https://doi.org/10.1016/0168-9002(92)90148-W
  23. J. He, et al., Rapid radionuclide identification algorithm based on the discrete cosine transform and BP neural network, Ann. Nucl. Energy 112 (2018) 1-8. https://doi.org/10.1016/j.anucene.2017.09.032
  24. J.-P. He, et al., Spectrometry analysis based on approximation coefficients and deep belief networks, Nucl. Sci. Tech. 29 (2018) 69. https://doi.org/10.1007/s41365-018-0402-4
  25. J. Allison, et al., Geant4 developments and applications. Communications of the ACMIEEE trans, Signal Process IEEE Trans. Nucl. Sci. 53 (2006) 270-278. https://doi.org/10.1109/TNS.2006.869826
  26. T. Liu, et al., Implementation of Training Convolutional Neural Networks, 2015 arXiv preprint arXiv:1506.01195.
  27. J. Wu, Introduction to Convolutional Neural Networks, vol. 5, National Key Lab for Novel Software Technology. Nanjing University, China, 2017, p. 23.
  28. Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436-444. https://doi.org/10.1038/nature14539
  29. A. Gulli, S. Pal, Deep Learning with Keras, Packt Publishing Ltd, 2017.
  30. F. Chollet, Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek, MITP-Verlags GmbH & Co. KG, 2018.
  31. I. Vasilev, Python Deep Learning: Exploring Deep Learning Techniques and Neural Network Architectures with PyTorch, Keras, and TensorFlow, 2019.
  32. R. Atienza, Advanced Deep Learning with Keras: Apply Deep Learning Techniques, Autoencoders, GANs, Variational Autoencoders, Deep Reinforcement Learning, Policy Gradients, and More, Packt Publishing Ltd, 2018.