DOI QR코드

DOI QR Code

The influence of BaO on the mechanical and gamma / fast neutron shielding properties of lead phosphate glasses

  • Mahmoud, K.A. (Department of Nuclear Power Plants and Renewable Energy Sources, Ural Power Engineering Institute, Ural Federal University) ;
  • El-Agawany, F.I. (Menoufia University, Faculty of Science, Physics Department) ;
  • Tashlykov, O.L. (Department of Nuclear Power Plants and Renewable Energy Sources, Ural Power Engineering Institute, Ural Federal University) ;
  • Ahmed, Emad M. (Department of Physics, College of Science, Taif University) ;
  • Rammah, Y.S. (Menoufia University, Faculty of Science, Physics Department)
  • 투고 : 2020.08.20
  • 심사 : 2021.06.05
  • 발행 : 2021.11.25

초록

The mechanical features evaluated theoretically using Makishima-Mackenzie's model for glasses xBaO-(50-x) PbO-50P2O5 where x = 0, 5, 10, 15, 20, 30, 40, and 50 mol%. Wherefore, the elastic characteristics; Young's, bulk, shear, and longitudinal modulus calculated. The obtained result showed an increase in the calculated values of elastic moduli with the replacement of the PbO by BaO contents. Moreover, the Poisson ratio, micro-hardness, and the softening temperature calculated for the investigated glasses. Besides, gamma and neutron shielding ability evaluated for the barium doped lead phosphate glasses. Monte Caro code (MCNP-5) and the Phy-X/PSD program applied to estimate the mass attenuation coefficient of the studied glasses. The decrease in the PbO ratio has a negative effect on the MAC. The highest MAC decreased from 65.896 cm2/g to 32.711 cm2/g at 0.015 MeV for BPP0 and BPP7, respectively. The calculated values of EBF and EABF showed that replacement of PbO with BaO contents in the studied BPP glasses helps to reduce the number of photons accumulated inside the studied BPP glasses.

키워드

과제정보

Taif University, Saudi Arabia is kindly acknowledged for Supporting our work through the Project number (TURSP-2020/84).

참고문헌

  1. S.A.M. Issa, T.A. Hamdalla, A.A.A. Darwish, Effect of ErCl3 in gamma and neutron parameters for different concentration of ErCl3-SiO2 (EDFA) for the signal protection from nuclear radiation, J. Alloys Compd. 698 (2017) 234-240. https://doi.org/10.1016/j.jallcom.2016.12.176
  2. D.K. Gaikwad, S.S. Obaid, M.I. Sayyed, R.R. Bhosale, V.V. Awasarmol, A. Kumar, M.D. Shirsat, P.P. Pawar, Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to different glasses and concretes, Mater. Chem. Phys. 213 (2018) 508-517. https://doi.org/10.1016/j.matchemphys.2018.04.019
  3. Y.S. Rammah, F.I. El-Agawany, K.A. Mahmoud, R. El-Mallawany, Ilik Erkan, Kilic Gokhan, FTIR, UV-Vis-NIR spectroscopy, and gamma rays shielding competence of novel ZnO-doped vanadium borophosphate glasses, J. Mater. Sci. Mater. Electron. 31 (2020) 9099-9113, https://doi.org/10.1007/s10854-020-03440-5.
  4. V.P. Singh, H.O. Tekin, N.M. Badiger, T. Manici, E.E. Altunsoy, Effect of heat treatment on radiation shielding properties of concretes, Journal of Radiation Protection and Research 43 (1) (2018) 20-28, https://doi.org/10.14407/jrpr.2018.43.1.20.
  5. Y.S. Rammah, Influence of Ag2O insertion on alpha, proton and γ-rays safety features of TeO2.ZnO.Na2O glasses: potential use for nuclear medicine applications, Ceram. Int. 46 (11Part A) (2020) 18151-18159, https://doi.org/10.1016/j.ceramint.2020.04.136.
  6. C. Bootjomchai, J. Laopaiboon, C. Yenchai, R. Laopaiboon, Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses, Radiat. Phys. Chem. 81 (2012) 785-790, https://doi.org/10.1016/j.radphyschem.2012.01.049.
  7. A.A.A. Darwish, S.A.M. Issa, M.M. El-Nahass, Efect of gamma irradiation on structural, electrical and optical properties of nanostructure thin flms of nickel phthalocyanine, Synth. Methods 215 (2016) 200-206, https://doi.org/10.1016/j.synthmet.2016.03.002.
  8. B.O. Elbashir, M.G. Dong, M.I. Sayyed, S.A.M. Issa, K.A. Matori, M.H.M. Zaid, Comparison of Monte Carlo simulation of gamma-ray attenuation coefficients of amino acids with XCOM program and experimental data, Results Phys 9 (2018) 6-11, https://doi.org/10.1016/j.rinp.2018.01.075.
  9. S.A.M. Issa, Y.B. Saddeek, H.O. Tekin, M.I. Sayyed, K. Saber Shaaban, Investigations of radiation shielding using Monte Carlo method and elastic properties of PbO-SiO2-B2O3-Na2O glasses, Curr. Appl. Phys. 18 (2018) 717-727. https://doi.org/10.1016/j.cap.2018.02.018
  10. S.A.M. Issa, M.I. Sayyed, M.H.M. Zaid, K.A. Matori, Photon parameters for gamma-rays sensing properties of some oxide of lanthanides, Results Phys 9 (2018) 206-210, https://doi.org/10.1016/j.rinp.2018.02.039.
  11. R. Mirji, B. Lobo, Computation of the mass attenuation coefficient of polymeric materials at specifc gamma photon energies, Phys.Chem. Radiat. 1 (2017) 1, https://doi.org/10.1016/j.radphyschem.2017.03.001.
  12. M.I. Sayyed, S.A.M. Issa, S.H. Auda, Assessment of radio-protective properties of some anti-infammatory drugs, Prog. Nucl. Energy 100 (2017) 297-308, https://doi.org/10.1016/j.pnucene.2017.07.003.
  13. K.J. Singh, S. Kaur, R.S. Kaundal, Comparative Study of Gammaray Shielding and Some.
  14. A.A. Ali, Y.S. Rammah, M.H. Shaaban, The influence of TiO2 on structural, physical and optical properties of B2O3 -TeO2 - Na2O - CaO glasses, J. NonCryst. Solids 514 (2019) 52-59. https://doi.org/10.1016/j.jnoncrysol.2019.03.030
  15. Y.S. Rammah, Gokhan Kilic, R. El-Mallawany, U. Gokhan Issever, F.I. El-Aga-wany, Investigation of optical, physical, and gamma-ray shielding features of novel vanadyl boro-phosphate glasses, J. Non-Cryst. Solids 533 (2020), 119905. https://doi.org/10.1016/j.jnoncrysol.2020.119905
  16. Y.S. Rammah, F.I. El-Agwany, K.A. Mahmoud, A. Novatski, R. El-Mallawany, Role of ZnO on TeO2. Li2O. ZnO glasses for optical and nuclear radiation shielding applications utilizing MCNP5 simulations and WINXCOM program, J. Non-Cryst. Solids 544 (2020), 120162. https://doi.org/10.1016/j.jnoncrysol.2020.120162
  17. G. Moulika, S. Sailaja, B.N.K. Reddy, V.S. Reddy, S. Dhoble, B.S. Reddy, Optical properties of Eu3+ & Tb3+ ions doped alkali oxide (Li2O/Na2O/K2O) modified boro phosphate glasses for red, green lasers and display device applications, Physica B 535 (2018) 2-7. https://doi.org/10.1016/j.physb.2017.05.042
  18. M.K. Hwang, I.G. Kim, B.K. Ryu, Study of water resistance of Fe2O3 doped P2O5-ZnO-Bi2O3 sealing glass system, Korean J. Met. Mater. 54 (2016) 621-625. https://doi.org/10.3365/kjmm.2016.54.8.621
  19. M. Saad, H. Elhouichet, Good optical performances of Eu3+/Dy3+/Ag nanoparticles co-doped phosphate glasses induced by plasmonic effects, J. Alloys Compd. 806 (2019) 1403-1409. https://doi.org/10.1016/j.jallcom.2019.06.353
  20. J.-H. Hsu, J. Bai, C.-W. Kim, R.K. Brow, J. Szabo, A. Zervos, The effects of crystallization and residual glass on the chemical durability of iron phosphate waste forms containing 40 wt% of a high MoO3 Collins-CLT waste, J. Nucl. Mater. 500 (2018) 373-380. https://doi.org/10.1016/j.jnucmat.2018.01.005
  21. F.Z. Souissi, H. Ettoumi, M. Barre, M. Toumi, Preparation and electrical con- ductivity of potassium phosphate glasses containing Al2O3, J. Non-Cryst. Solids 481 (2018) 585-589. https://doi.org/10.1016/j.jnoncrysol.2017.12.004
  22. P. Pascuta, G. Borodi, N. Jumate, I. Vida-Simiti, D. Viorel, E. Culea, The structural role of manganese ions in some zinc phosphate glasses and glass ceramics, J. Alloys Compd. 504 (2010) 479-483. https://doi.org/10.1016/j.jallcom.2010.05.147
  23. Y. Lai, X. Liang, G. Yin, S. Yang, J. Wang, H. Zhu, H. Yu, Infrared spectra of iron phosphate glasses with gadolinium oxide, J. Mol. Struct. 1004 (2011) 188-192. https://doi.org/10.1016/j.molstruc.2011.08.003
  24. G. Cormier, J.A. Capobianco, A. Monteil, Molecular dynamics simulation of lead metaphosphate Pb(PO3)2 glass, J. Non-Cryst. Solids 168 (1994) 115-124. https://doi.org/10.1016/0022-3093(94)90126-0
  25. G. Little Flower, G. Sahaya Baskaran, M. Srinivasa Reddy, N. Veeraiah, The structural investigations of PbO-P2O5-SB2O3 glasses with MoO3 as additive by means of dielectric, spectroscopic and magnetic studies, Physica B 393 (2007) 61-72. https://doi.org/10.1016/j.physb.2006.12.070
  26. C. Dayanand, G. Bhikshamaiah, V.J. Tyagaraju, M. Salagram, A.S.R. Krishna Murthy, Structural investigations of phosphate glasses: a detailed infrared study of the x(PbO)-(1-x) P2O5 vitreous system, J. Mater. Sci. 31 (1996) 1945-1967. https://doi.org/10.1007/BF00356615
  27. C. Ivascu, A. Timar Gabor, O. Cozar, L. Daraban, I. Ardelean, FT-IR, Raman and thermoluminescence investigation of P2O5-BaO-Li2O glass system, J. Mol. Struct. 993 (2011) 249-253. https://doi.org/10.1016/j.molstruc.2010.11.047
  28. H. Doweidar, G. El-Damrawi, E. El Agammy, Structural correlations in BaO-PbO-B2O3 glasses as inferred from FTIR spectra, Vib. Spectrosc. 73 (2014) 90-96. https://doi.org/10.1016/j.vibspec.2014.05.003
  29. H. Doweidar, K. El-Egili, R. Ramadan, M. Al-Zaibani, Structural investigation and properties of Sb2O3-PbO-B2O3 glasses, J. Non-Cryst. Solids 497 (2018) 93-101. https://doi.org/10.1016/j.jnoncrysol.2018.01.025
  30. H. Doweidar, A.H. Oraby, Density of lead borate glasses in relation to the microstructure, Phys. Chem. Glasses 38 (1997) 69-73.
  31. Y.S. Rammah, K.A. Mahmoud, E. Kavaz, Ashok Kumar, F.I. El-Agawany, The role of PbO/Bi2O3 insertion on the shielding characteristics of novel borate glasses, Ceram. Int. (2020), https://doi.org/10.1016/j.ceramint.2020.04.018.
  32. Y.S. Rammah, K.A. Mahmoud, M.I. Sayyed d, F.I. El-Agawany, R. El-Mallawany, Novel vanadyl lead-phosphate glasses: P2O5-PbO-ZnO-Na2O-V2O5: synthesis, optical, physical and gamma photon attenuation properties, J. Non-Cryst. Solids 534 (2020), 119944. https://doi.org/10.1016/j.jnoncrysol.2020.119944
  33. U. Perisanoglu, F.I. El-Agawany, E. Kavaz, M. Al-Buriahi, Y.S. Rammah, Surveying of Na2O3-BaO-PbO-Nb2O5-SiO2-Al2O3 glass-ceramics system in terms of alpha, proton,neutron and gamma protection features by utilizing GEANT4 simulation codes, Ceram. Int. 46 (2020) 3190-3202. https://doi.org/10.1016/j.ceramint.2019.10.023
  34. M.S. Al-Buriahi, F.I. El-Agawany, C. Sriwunkum, Hakan Akyildirim, Halil Arslan, B.T. Tonguc, R. El-Mallawany, Y.S. Rammah, Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses, Physica B 581 (2020), 411946. https://doi.org/10.1016/j.physb.2019.411946
  35. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3-CaO glasses, Ceram. Int. 46 (2020) 2055-2062. https://doi.org/10.1016/j.ceramint.2019.09.185
  36. M. Hamed Misbah, H. Doweidar, K. El-Egili, G. El-Damrawi, M. El-Kemary, Structure and some properties of xBaO.(50-x)PbO.50P2O5 glasses, J. NonCryst. Solids 534 (2020), 119945. https://doi.org/10.1016/j.jnoncrysol.2020.119945
  37. A. Makishima, J.D. Mackenzie, Direct calculation of Young's modulus of glass, J. Non-Cryst. Solids 12 (1973) 35-45. https://doi.org/10.1016/0022-3093(73)90053-7
  38. A. Makishima, J.D. Mackenzie, Calculation of Bulks modulus, Shear modulus and Piosson's ratio of glass, J. Non-Cryst. Solids 17 (1975) 147-157. https://doi.org/10.1016/0022-3093(75)90047-2
  39. R. Kurtulus, T. Kavas, K.A. Mahmoud, I. Akkurt, K. Gunoglu, M.I. Sayyed, The effect of Nb2O5 on waste soda-lime glass in gamma-rays shielding applications, J. Mater. Sci. Mater. Electron. 32 (4) (2021) 4903-4915, https://doi.org/10.1007/s10854-020-05230-5.
  40. Qiuling Chen, K.A. Naseer, K. Marimuthu, P. Suthanthira Kumar, Baoji Miao, K.A. Mahmoud, M.I. Sayyed, Influence of modifier-oxide on the structural and radiation shielding features of Sm3+ doped calcium telluro-fluoroborate glass system, Journal of the Australian Ceramics Society 57 (1) (2021) 275-286, https://doi.org/10.1007/s41779-020-00531-8.
  41. Y.S. Rammah, K.A. Mahmoud, F.I. El-Agawany, O.L. Tashlykov, E. Yousef, Tm3+ ions doped phosphate glasses: nuclear shielding competence and elastic moduli, Appl. Phys. A 126 (2020) 927, https://doi.org/10.1007/s00339-020-04109-w.
  42. E. S, akar, O.F. Ozpolat, B. Alim, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem. 166 (2020), 108496. https://doi.org/10.1016/j.radphyschem.2019.108496
  43. S. Inaba, S. Fujino, K. Morinaga, Young's modulus and compositional parameters of oxide glasses, J. Am. Ceram. Soc. 82 (1999) 3501-3507. https://doi.org/10.1111/j.1151-2916.1999.tb02272.x
  44. H.A.A. Sidek, R. El-Mallawany, K.A. Matori, M.K. Halimah, Effect of PbO on the elastic behavior of ZnO-P2O5 glass systems, Results in Physics 6 (2016) 449-455. https://doi.org/10.1016/j.rinp.2016.07.014

피인용 문헌

  1. Gamma Irradiation and the Radiation Shielding Characteristics: For the Lead Oxide Doped the Crosslinked Polystyrene-b-Polyethyleneglycol Block Copolymers and the Polystyrene-b-Polyethyleneglycol-Boron vol.13, pp.19, 2021, https://doi.org/10.3390/polym13193246