과제정보
This work was supported by Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government (MOTIE) (20206510100040)
참고문헌
- I. Bose, R.K. Mahapatra, Business data mining - a machine learning perspective, Inf. Manag. 39 (2001) 211-225. https://doi.org/10.1016/S0378-7206(01)00091-X
- Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86 (1998) 2278-2324. https://doi.org/10.1109/5.726791
- W. Huang, Y. Nakamori, S.Y. Wang, Forecasting stock market movement direction with support vector machine, Comput. Oper. Res. 32 (2005) 2513-2522. https://doi.org/10.1016/j.cor.2004.03.016
- J.R. Dorronsoro, F. Ginel, C. Sanchez, C.S. Cruz, Neural fraud detection in credit card operations, IEEE Trans. Neural Network. 8 (1997) 827-834. https://doi.org/10.1109/72.595879
- A. Hsu, B. Cheng, P.A. Bradley, Analysis of NIF scaling using physics informed machine learning, Phys. Plasmas 27 (2020), 012703. https://doi.org/10.1063/1.5130585
- P. Sadowski, Deep Learning for Experimental Physics, (PhD Thesis), University of California, Irvine, 2016.
- T. Shaikhina, D. Lowe, S. Daga, D. Briggs, R. Higgins, N. Khovanova, Machine learning for predictive modelling based on small data in biomedical engineering, IFAC-Papers Online 48 (2015) 469-474.
- M. Sabatino, M. Fabiani, M. Bozovic, S. Garzoli, L. Antonini, M.E. Marcocci, A.T. Palamara, G. De Chiara, R. Ragno, R. Experimental data based machine learning classification models with predictive ability to select in vitro active antiviral and non-toxic essential oils, Molecules 25 (2020) 2452. https://doi.org/10.3390/molecules25102452
- Z. Ceylan, B. Sungur, Estimation of coal elemental composition from proximate analysis using machine learning techniques, Energy Sources, Part A Recovery, Util. Environ. Eff. 38 (2020) 1-11.
- J. Hoffmann, Y. Bar-Sinai, L.M. Lee, J. Andrejevic, S. Mishra, S.M. Rubinstein, C.H. Rycroft, Machine learning in a data-limited regime: augmenting experiments with synthetic data uncovers order in crumpled sheets, Sci. Adv. 5 (2019), eaau6792. https://doi.org/10.1126/sciadv.aau6792
- A. Smith, A. Keane, J.A. Dumesic, G.W. Huber, V.M. Zavala, A machine learning framework for the analysis and prediction of catalytic activity from experimental data, Appl. Catal. B Environ. 263 (2020) 118257. https://doi.org/10.1016/j.apcatb.2019.118257
- P. Grechanuk, M.E. Rising, T.S. Palmer, Using machine learning methods to predict bias in nuclear criticality safety, J. of Comput. Theoretical Transport 47 (2018) 552-565. https://doi.org/10.1080/23324309.2019.1585877
- M.G. Fernandez, A. Tokuhiro, K. Welter, Q. Wu, Nuclear energy system's behavior and decision making using machine learning, Nucl. Eng. Des. 324 (2017) 27-34. https://doi.org/10.1016/j.nucengdes.2017.08.020
- J.J. Ortiz, A. Castillo, J.L. Montes, R. Perusquia, J.L. Hernandez, Nuclear fuel lattice optimization using neural networks and a fuzzy logic system, Nucl. Sci. Eng. 162 (2009) 148-157. https://doi.org/10.13182/NSE162-148
- A. Pirouzmand, M.K. Dehdashti, Estimation of relative power distribution and power peaking factor in a VVER-1000 reactor core using artificial neural networks, Prog. Nucl. Energy 85 (2015) 17-27. https://doi.org/10.1016/j.pnucene.2015.06.001
- K. Trontl, D. Pevec, T. Smuc, Machine Learning of the reactor core loading pattern critical parameters, Sci. Tech. Nuc. Install. 2008 (2008) 695153.
- I.H. Bae, M.G. Na, Y.J. Lee, G.C. Park, Calculation of the power peaking factor in a nuclear reactor using support vector regression models, Ann. Nucl. Energy 35 (2008) 2200-2205. https://doi.org/10.1016/j.anucene.2008.09.004
- F. Khoshahval, S. Yum, H.C. Shin, J. Choe, P. Zhang, D. Lee, Smart sensing of the axial power and offset in NPPs using GMDH method, Ann. Nucl. Energy 121 (2018) 77-88. https://doi.org/10.1016/j.anucene.2018.07.007
- M.G. Park, H.C. Shin, Reactor power shape synthesis using group method of data handling, Ann. Nucl. Energy 72 (2014) 467-470. https://doi.org/10.1016/j.anucene.2014.06.010
- M.I. Radaideh, T. Kozlowski, Combining simulations and data with deep learning and uncertainty quantification for advanced energy modeling, Int. J. Energy Res. 43 (2019) 7866-7890. https://doi.org/10.1002/er.4698
- E. Nissan, An overview of AI methods for in-core fuel management: tools for the automatic design of nuclear reactor core configurations for fuel reload, (re)arranging new and partly spent fuel, Design 3 (2020) 37. https://doi.org/10.3390/designs3030037
- I.C. Gauld, G. Ilas, B.D. Murphy, C.F. Weber, Validation of SCALE 5 Decay Heat Predictions for LWR Spent Nuclear Fuel, US Nuclear Regulatory Commission, Technical Report, 2010. NUREG/CR-6972.
- SKB, Measurements of Decay Heat in Spent Nuclear Fuel at Swedish Interim Storage Facilit, in: Y, CLAB. Svensk Karnbranslehantering AB (SKB), Swedish Nuclear Fuel and Waste Management Co., 2006, pp. R-05-62.
- B.D. Murphy, I.C. Gauld, Spent Fuel Decay Heat Measurements Performed at the Swedish Central Interim Storage Facility, US Nuclear Regulatory Commission, Technical Report, 2010. NUREG/CR-6971.
- G. Ilas, I.C. Gauld, H. Liljenfeldt, Validation of ORIGEN for LWR used fuel decay heat analysis with SCALE, Nucl. Eng. Des. 273 (2014) 58-67. https://doi.org/10.1016/j.nucengdes.2014.02.026
- G. Ilas, I.C. Gauld, SCALE analysis of CLAB decay heat measurements for LWR spent fuel assemblies, Ann. Nucl. Energy 35 (2008) 37-48. https://doi.org/10.1016/j.anucene.2007.05.017
- P. Jansson, A. Hakansson, A. Backlin, S. Jacobsson, Gamma ray spectroscopy measurements of decay heat in spent nuclear fuel, Nucl. Sci. Eng. 141 (2002) 129-139. https://doi.org/10.13182/nse02-a2272
- O. Osifo, S.J. Svard, A. Hakansson, C. Willman, A. Backlin, T. Lundqvist, Verification and determination of the decay heat in spent PWR fuel by means of gamma scanning, Nucl. Sci. Eng. 160 (2008) 129-143. https://doi.org/10.13182/NSE160-129TN
- R.W. Mills, Decay heat calculations a study of their validation and accuracy, in: 2nd International Workshop on Nuclear Data Evaluation for Reactor (WONDER 2009), Cadarache, France, 2009, p. 152. September 29 - October 2.
- J.J. Faraway, Practical regression and anova using R, pp. 117, 118. Available at: https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf. (Accessed 27 August 2020).
- G. Ilas, H. Liljenfeldt, Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties, Nucl. Eng. Des. 319 (2017) 176-184. https://doi.org/10.1016/j.nucengdes.2017.05.009
- B. Ebiwonjumi, C. Kong, P. Zhang, C. Alexey, D. Lee, Uncertainty quantification of PWR Spent Fuel due to nuclear data and modeling parameters, Nucl. Eng. Tech. (2021), https://doi.org/10.1016/j.net.2020.07.012 article in press.
- B. Nowok, G. Raab, C. Dibben, Synthpop: bespoke creation of synthetic data in R, J. Stat. Software 74 (2016) 1-26.
- H. Ping, J. Stoyanovich, B. Howe, DataSynthesizer: privacy-preserving synthetic datasets, in: 29th International Conference on Scientific and Statistical Database Management, June 27-29, 2017. Chicago, IL, USA.
- D.A. Van Dyk, X.L. Meng, The art of data augmentation, J. Comput. Graph Stat. 10 (2012) 1-50. https://doi.org/10.1198/10618600152418584
- N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-sampling technique, J. Artif. Intell. Res. 16 (2002) 321-357. https://doi.org/10.1613/jair.953
- T.R. Willemain, R.A. Bress, L.S. Halleck, Enhanced simulation inference using bootstraps of historical inputs, IIE Trans. 35 (2003) 851-862. https://doi.org/10.1080/07408170304404
- C. Willman, A. Hakansson, O. Osifo, A. Backlin, S.J. Svard, Nondestructive assay of spent nuclear fuel with gamma-ray spectroscopy, Ann. Nucl. Energy 33 (2006) 427-438. https://doi.org/10.1016/j.anucene.2005.12.005
- OECD/NEA, Evaluation Guide for the Evaluated Spent Nuclear Fuel Assay Database (SFCOMPO), Organization for Economic Cooperation and Development, Nuclear Energy Agency, Nuclear Science Committee, Working Party on Nuclear Criticality Safety, NEA/NSC/R, 2016, p. 8 (2015).
- C.M. Bishop, Training with noise is equivalent to Tikhonov regularization, Neural Comput. 7 (1995) 108-116. https://doi.org/10.1162/neco.1995.7.1.108
- G. An, The effects of adding noise during backpropagation training on a generalization performance, Neural Comput. 8 (1996) 643-674. https://doi.org/10.1162/neco.1996.8.3.643
- S.S. Lee, Noisy replication in skewed binary classification, Comput. Stat. Data Anal. 34 (2000) 165-191. https://doi.org/10.1016/S0167-9473(99)00095-X
- J. Yang, X. Yu, Z.Q. Xie, J.P. Zhang, A novel virtual sample generation method based on Gaussian distribution, Knowl. Base Syst. 24 (2011) 740-748. https://doi.org/10.1016/j.knosys.2010.12.010
- H. Surendra, H.S. Mohan, A review of synthetic data generation methods for privacy preserving data publishing, Int. J. Sci. Tech. Res. 6 (2017) 95-101.
- S. Choi, C. Lee, D. Lee, Resonance treatment using pin-based pointwise energy slowing-down method, J. Comput. Phys. 330 (2017) 137-155.
- C. Lataniotis, D. Wicaksono, S. Marelli, B. Sudret, UQLab User Manual - Kriging (Gaussian Process Modeling), Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Switzerland, 2019. Report # UQLab-V1.3-105.
- M. Moustapha, C. Lataniotis, S. Marelli, B. Sudret, UQLab User Manual - Support Vector Machines for Regression, Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Switzerland, 2019. Report # UQLab-V1.3-111.
- M.H. Beale, M.T. Hagan, H.B. Denmuth, Deep Learning Toolbox User's Guide, The MathWorks, Inc., 2018.
- S. Marelli, B. Surety, UQLab: a framework for uncertainty quantification in MATLAB, in: 2nd International Conference on Vulnerability, Risk Analysis and Management, July 13-16, 2014. Liverpool, United Kingdom.
- B. Ebiwonjumi, D. Lee, Bayesian method and polynomial chaos expansion based inverse uncertainty quantification of spent fuel using decay heat measurements, Nucl. Eng. Des. 378 (2021) 11158.
- S. Vaccaro, S.J. Tobin, A. Favalli, B. Grogan, P. Jansson, H. Liljenfeldt, V. Mozin, J. Hu, P. Schwalbach, A. Sjoland, H. Trellue, D. Vo, PWR and BWR spent fuel assembly gamma spectra measurements, Nucl. Instrum. Methods Phys. Res. A 833 (2016) 208-225. https://doi.org/10.1016/j.nima.2016.07.032
- T. Shaikhina, N. Khovanova, Handling limited datasets with neural networks in medical applications: a small-data approach, Artif. Intell. Med. 75 (2017) 51-63. https://doi.org/10.1016/j.artmed.2016.12.003
- P. Cunningham, J. Carney, S. Jacob, Stability problems with artificial neural networks and the ensemble solution, Artif. Intell. Med. 20 (2000) 217-225. https://doi.org/10.1016/S0933-3657(00)00065-8
- S. Alfeo, H. Laurie, B. Vivek, J.S. Karen, Overcoming small data limitations in heart disease prediction by using surrogate data, SMU Data Science Review 1 (3) (2018), 12. Available at: https://scholar.smu.edu/datasciencereview/vol1/iss3/12. (Accessed 15 July 2020).