A Classification of the Torsion-free Extensions

Won-Sok Yoo ${ }^{\dagger}$
Department of Applied Mathematics, Kumoh National Institute of Technology, Kumi, Korea

Abstract

The purpose of this paper is to classify the torsion-free extensions $1 \rightarrow \mathbb{Z}^{3} \rightarrow \Pi \rightarrow \mathbb{Z}_{\Phi} \rightarrow 1$ with injective abstract kernel $\phi: \mathbb{Z}_{\Phi} \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{3}\right)$. From this classification, we handle the sufficient conditions so as to classify the crystallographic groups of $\mathrm{Sol}_{m, n}^{4}$.

Keywords: Torsion-free extensions, Crystallographic group, Bieberbach group, $\operatorname{Sol}_{m, n}^{4}, A_{m, n}$
(Recceived September 7, 2021 Revised September 11, 2021 Accepted September 13, 2021)

1. Introduction

Let X be a complete connected, simply connected Riemannian manifold, and let G be a group of isometries of X. A pair (X, G) is called a geometry in the sense of Thurston ${ }^{[1,2]}$ if G acts transitively on X and G contains a discrete subgroup I with the coset space $\Gamma \backslash X$ of finite volume.

Let G be a connected, simply connected solvable Lie group and let C be any maximal compact subgroup of $\operatorname{Aff}(G)$. A discrete cocompact subgroup Π of $G \times G$ is called a crystallographic group of G. The coset space $\Pi \backslash G$ is an infra-solvmanifold of G, when Π is a Bieberbach group (i.e., a torsion-free crystallographic group) of G. The maximal compact subgroup C can be chosen so that $G \times C$ is equal to Isom (G). Therefore, the Bieberbach groups of G are exactly the fundamental groups of compact infrasolvmanifolds of G. Consequently, a closed manifold has a (X, G)-geometry if and only if it is an infrasolvmanifold of G. The crystallographic groups of Sol^{3} and Sol_{1}^{4} are classified in [3] and [4], respectively. All the closed four-manifolds with Sol_{1}^{4}-geom-
etry were studied in [5].
There are infinite but countable number of the Lie groups $\mathrm{Sol}_{\lambda}^{4}$ that admit a lattice. Such Lie groups are denoted by $\operatorname{Sol}_{m, n}^{4}$. In [6], we showed that $\operatorname{Sol}_{m, n}^{4}$ has a unique lattice up to isomorphism and studied the necessary conditions for the crystallographic groups of $\mathrm{Sol}_{m, n}^{4}$.
In this paper, we classify the torsion-free extensions $1 \rightarrow \mathbb{Z}^{3} \rightarrow \Pi \rightarrow \mathbb{Z}_{\Phi} \rightarrow 1$ with injective abstract kernel $\phi: \mathbb{Z}_{\Phi} \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{3}\right)$, and handle the classification problem to classify the crystallographic groups of $\mathrm{Sol}_{m, n}^{4}$.

2. Extensions $1 \rightarrow \mathbb{Z}^{3} \rightarrow \Pi \rightarrow \mathbb{Z}_{\Phi} \rightarrow 1$

In this section, we achieve our classification problem by classifying the torsion-free extensions $1 \rightarrow \mathbb{Z}^{3} \rightarrow \Pi \rightarrow \mathbb{Z}_{\Phi} \rightarrow 1$ with injective abstract kernel ϕ : $\mathbb{Z}_{\Phi} \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{3}\right)$, see for example [5, Lemma 1.2].
2.1. Case $\Phi=\{1\}$. If $\Phi=\{1\}$ then $\Pi=\Gamma$ is a lattice of $\mathrm{Sol}_{m, n}^{4}$.
2.2. Case $\Phi=\mathbb{Z}_{2}$ From [6], we may assume that

[^0]$$
\Gamma=\left\langle\left(x_{1}, 0\right),\left(x_{2}, 0\right),\left(x_{3}, 0\right),(0, s)\right\rangle=\mathbb{Z}^{3} \times{ }_{A_{m, n}} \mathbb{Z}
$$
where $s=\ln \alpha_{2}$ and the vectors x_{i} are given in (3-5) of [6], i.e.,
\[

x_{1}=\left[$$
\begin{array}{c}
\alpha_{2} \alpha_{3} \\
-\left(\alpha_{2}+\alpha_{3}\right) \\
1
\end{array}
$$\right], x_{2}=\left[$$
\begin{array}{c}
\alpha_{3} \alpha_{1} \\
-\left(\alpha_{3}+\alpha_{1}\right) \\
1
\end{array}
$$\right], x_{3}=\left[$$
\begin{array}{c}
\alpha_{1} \alpha_{2} \\
-\left(\alpha_{1}+\alpha_{2}\right) \\
1
\end{array}
$$\right]
\]

Consider $\Phi=<X>$ Choose a lift $(r, t, X) \in \Pi$ of X where $t=0$ or $\frac{s}{2}$, and $r \in \mathbb{R}^{3}$ Then $\Pi=<\Gamma,(r, t, X)>$. Let $t=0$. This is exactly the case where $\mathbb{Z}_{\Phi}=<(s, I)$, $(0, X)>=\mathbb{Z} \times \mathbb{Z}_{2}$. Since \mathbb{Z}^{3} must be a normal subgroup of Π, we have

$$
(r, 0, X)\left(\mathrm{x}_{i}, 0, I\right)(r, 0, X)^{-1}=\left(X\left(\mathrm{x}_{i}\right), 0, I\right) \in \mathbb{Z}^{3}
$$

Hence,

$$
\begin{equation*}
X\left(\mathrm{x}_{i}\right)=p_{1 i} \mathrm{x}_{1}+p_{2 i} \mathrm{x}_{2}+p_{3 i} \mathrm{x}_{3}(i=1,2,3) \tag{2-1}
\end{equation*}
$$

for some integers $p_{i j}$ This means that

$$
\left[\begin{array}{lll}
\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3}
\end{array}\right]^{-1} X\left[\begin{array}{lll}
\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \tag{2-2}
\end{array}\right]=\left[p_{i j}\right] \in \mathrm{GL}(3, \mathbb{Z})
$$

A direct computation of (2-2) shows that

$$
\left[p_{i j}\right]=\left[\begin{array}{l}
\frac{-\alpha_{1}^{2}+n}{\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{1}-\alpha_{2}\right)} \frac{2 \alpha_{3} \alpha_{1}}{\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)} \frac{2 \alpha_{1} \alpha_{2}}{\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{3}-\alpha_{1}\right)} \\
\frac{2 \alpha_{2} \alpha_{3}}{\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{1}-\alpha_{2}\right)} \frac{-\alpha_{2}^{2}+n}{\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)} \frac{2 \alpha_{1} \alpha_{2}}{\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{3}-\alpha_{1}\right)} \\
\frac{2 \alpha_{2} \alpha_{3}}{\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{1}-\alpha_{2}\right)} \frac{2 \alpha_{3} \alpha_{1}}{\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)} \frac{-\alpha_{3}^{2}+n}{\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{3}-\alpha_{1}\right)}
\end{array}\right]
$$

By (2-1), we have $X\left(\mathrm{x}_{1}\right)=p_{11} \mathrm{x}_{1}+p_{21} \mathrm{x}_{2}+p_{31} \mathrm{x}_{3}$ or

$$
\left[\begin{array}{c}
-\alpha_{2} \alpha_{3} \\
-\left(\alpha_{2}+\alpha_{3}\right) \\
1
\end{array}\right]=p_{11}\left[\begin{array}{c}
\alpha_{2} \alpha_{3} \\
-\left(\alpha_{2}+\alpha_{3}\right) \\
1
\end{array}\right]+p_{21}\left[\begin{array}{c}
\alpha_{3} \alpha_{1} \\
-\left(\alpha_{3}+\alpha_{1}\right) \\
1
\end{array}\right]+p_{31}\left[\begin{array}{c}
\alpha_{1} \alpha_{2} \\
-\left(\alpha_{1}+\alpha_{2}\right) \\
1
\end{array}\right]
$$

From the middle entries above, we have

$$
\begin{aligned}
0 & =\left(p_{11}-1\right)\left(\alpha_{2}+\alpha_{3}\right)+p_{21}\left(\alpha_{3}+\alpha_{1}\right)+p_{31}\left(\alpha_{1}+\alpha_{2}\right) \\
& =\frac{4 n \alpha_{2} \alpha_{3}}{\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{1}-\alpha_{2}\right)} \neq 0
\end{aligned}
$$

where the second identity is obtained by a direct computation. In conclusion, when $\Phi=\langle X\rangle, t$ cannot
be 0 . By the similar argument as above, we can show that unless $\Phi=<-I>, t$ cannot be 0 .

Now consider $\Phi=<-I>$ with $t=0$ In this case

$$
\begin{aligned}
& (r, 0,-I)\left(\mathrm{x}_{i}, 0, I\right)(r, 0,-I)^{-1} \\
& =\left(-I\left(\mathrm{x}_{i}\right), 0, I\right)=\left(-\mathrm{x}_{i}, 0, I\right) \in \mathbb{Z}^{3}
\end{aligned}
$$

Moreover, $(r, 0,-I)^{2}=(r-I(r), 0, I)=(0,0, I)$.
Consequently,

$$
\Pi=<\Gamma,(r, 0,-I)>=\Gamma \times \mathbb{Z}_{2}
$$

It is clear that the groups $<\Gamma,(r, 0,-I)>$ and $<\Gamma$, ($r^{\prime}, 0,-I$) > with any $r, r^{\prime} \in \mathbb{R}^{3}$ are isomorphic to each other.
Let $t=\frac{s}{2}$ Then $\mathbb{Z}_{\Phi}=\left\langle\left(\frac{s}{2}, X\right)\right\rangle \cong \mathbb{Z}$ and so Π is necessarily torsion-free. The abstract kernel $\phi: \mathbb{Z}_{\Phi} \rightarrow$ $\operatorname{Aut}\left(\mathbb{Z}^{3}\right)=\mathrm{GL}(3, \mathbb{Z})$ with respect to the ordered generators $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\}$ of \mathbb{Z}^{3} is determined by the image $\phi\left(\frac{s}{2}, X\right)$ Note that $\left(\frac{s}{2}, X\right)^{2}=(s, I), \phi(s)=A_{m, n}$ and

$$
\varphi^{\prime}\left(\frac{s}{2}, X\right)=\varphi\left(\frac{s}{2}\right) X=\left[\begin{array}{ccc}
-\sqrt{\alpha_{1}} & 0 & 0 \\
0 & \sqrt{\alpha_{2}} & 0 \\
0 & 0 & \sqrt{\alpha_{3}}
\end{array}\right]
$$

Thus, we must have that $\phi\left(\frac{s}{2}, X\right) \in \mathrm{GL}(3, \mathbb{Z})$ is a square root of $A_{m, n}$ (a matrix whose square is $A_{m, n}$) with eigenvalues $-\sqrt{\alpha_{1}}, \sqrt{\alpha_{2}}$, and $\sqrt{\alpha_{3}}$. We denote such an integer matrix by $\sqrt[x]{A}$. Let

$$
x^{3}-k x^{2}+l x+1=0
$$

be the characteristic equation of $\sqrt[x]{A}$ Then we have

$$
\begin{align*}
& m=k^{2}-2 l \tag{2-3}\\
& n=l^{2}+2 k
\end{align*}
$$

With (k, l) satisfying (2-3), we form the group

$$
\Pi=\mathbb{Z}^{3} \times{ }_{\sqrt[X]{A}}\left(\frac{1}{2} \mathbb{Z}\right)
$$

This group fits the following diagram (2-4). (see (4-1) in [6]).

In the above argument, if X is replaced with Y, Z, or $-I$, then

- $\sqrt[X]{A}$ should be replaced with $\sqrt[Y]{A}, \sqrt[Z]{A}$ or $\sqrt[-I]{A}$ and
- the eigenvalues $-\sqrt{\alpha_{1}}, \sqrt{\alpha_{2}}, \sqrt{\alpha_{3}}$ of $\sqrt[X]{A}$ should be replaced with the eigenvalues $\sqrt{\alpha_{1}},-\sqrt{\alpha_{2}}$, $\sqrt{\alpha_{3}}$ of $\sqrt[Y]{A}, \sqrt{\alpha_{1}}, \sqrt{\alpha_{2}},-\sqrt{\alpha_{3}}$ of $\sqrt[Z]{A}$ or $-\sqrt{\alpha_{1}}$, $-\sqrt{\alpha_{2}},-\sqrt{\alpha_{3}}$ of $\sqrt[-I]{A}$.
Let $x^{3}-k x^{2}+l x+1=0$ be the characteristic equation of $\sqrt[X]{A}, \sqrt[Y]{A}, \sqrt[Z]{A}$ or $\sqrt[-I]{A}$ Then the pair (k, l) satisfies (2-3). With (k, l) satisfying (2-3), the group

$$
\begin{aligned}
& \Pi=\mathbb{Z}^{3} \times{ }_{\sqrt[V]{A}}\left(\frac{1}{2} \mathbb{Z}\right) \\
& \Pi=\mathbb{Z}^{3} \times{ }_{\sqrt[Z]{A}}\left(\frac{1}{2} \mathbb{Z}\right)
\end{aligned}
$$

or

$$
\Pi=\mathbb{Z}^{3} \times{ }_{-\sqrt[l]{A}}\left(\frac{1}{2} \mathbb{Z}\right)
$$

fits the diagram (2-4).
In a similar way, we can replace X a generator of Φ with another generator $-X,-Y$, or $-Z$ In this case, the characteristic equation of the corresponding square matrix $\sqrt[-X]{A}, \sqrt[-Y]{A}$ or $\sqrt[-Z]{A}$ is

$$
x^{3}-k x^{2}+l x-1=0
$$

where the pair (k, l) satisfies

$$
\begin{align*}
& m=k^{2}+2 l \\
& n=l^{2}-2 k \tag{2-5}
\end{align*}
$$

For pairs (k, l) satisfying (2-5), we can form the group

$$
\begin{aligned}
& \Pi=\mathbb{Z}^{3} \times{ }_{-\sqrt[x]{A}}\left(\frac{1}{2} \mathbb{Z}\right) \\
& \Pi=\mathbb{Z}^{3} \times{ }_{-\sqrt[Y]{A}}\left(\frac{1}{2} \mathbb{Z}\right)
\end{aligned}
$$

or

$$
\Pi=\mathbb{Z}^{3} \times{ }_{-\sqrt[7]{A}}\left(\frac{1}{2} \mathbb{Z}\right)
$$

fitting the diagram (2-4).
Now we will show that every $A_{m, n}$ cannot admit a square root. First, we remark by (2-3) and (2-5) that both m and k and n and l share the even-odd parity.

Theorem 2.1. The integer matrix $A_{m, n}$ cannot admit a square root if one of the following holds:
(1) m is of the form $4 M$ and n is odd or of the form $4 N+2$
(2) m is of the form $4 M+1$ and n is odd or of the form $4 N$
(3) m is of the form $4 M+2$ and n is even or of the form $4 N+3$
(4) m is of the form $4 M+3$ and n is even or of the form $4 N+1$

If $A_{m, n}$ does not have a square root, then $\mathrm{Sol}_{m, n}^{4}$ has no Bieberbach group with holonomy group \mathbb{Z}_{2}.

Proof. First, let $m=4 M$ and n is odd. Then $k=2 K$ and $l=2 L+1$ for some integers R and L. By substitution to (2-3), we have

$$
4 M=(2 K)^{2}-2(2 L+1)=4\left(K^{2}-L-1\right)+2
$$

which is impossible.
Let $m=4 M$ and $n=4 N+2$ Then $k=2 K$ and $l=2 L$ for some integers R and L By substitution to (2-3) and (2-5), we have

$$
4 N+2=(2 L)^{2} \pm 2(2 K)=4\left(L^{2} \pm K\right)
$$

which is impossible.
The remaining cases can be considered in the same way. We can easily show that (2-3) and (2-5) are not satisfied in every remaining case. Hence $A_{m, n}$ cannot admit a square root.

The following example shows that the complementary case of Theorem 2.1 does not guarantee the existence of a square root.

Example 2.2. Consider $(m, n)=(12,8)$ This integer pair satisfies (3-4) in [6]. Assume that there exists an integer pair (k, l) satisfying the equations (2-3). Then $k=2 K$ and $l=2 L$ for some integers R and L and by substitution we get

$$
3=K^{2}-L, 2=L^{2}+K
$$

which yield $K^{4}-6 K^{2}+K+7=0$. However, by a simple inspection we can see that this equation has no integer root. Hence $A_{12,8}$ does not admit a square root, and $\mathrm{Sol}_{12,8}^{4}$ has no Bieberbach group with holonomy group \mathbb{Z}_{2}.

Now, we will examine the complementary case of Theorem 2.1 in detail, and obtain the "existence" conditions of a square root of $A_{m, n}$ We can immediately see that each case produces an hyperbola equation.
2.2.1. Case $1: m=4 M, n=4 N$. With $k=2 K$ and $l=2 L$ we have $4 M=(2 K)^{2}-2(2 L)=4\left(K^{2}-L\right)$ and $4 N=(2 L)^{2}+2(2 K)=4\left(L^{2}+K\right)$ and hence $(2-3)$ is equivalent to

$$
\begin{aligned}
M & =K^{2}-L \\
N & =L^{2}-K
\end{aligned}
$$

Thus we have

$$
(K-1) K-L(L+1)=M-N
$$

so $M-N=2 a$ is an even integer, and hence we have

$$
(K+L)(K-L-1)=2 a
$$

If $K+L=p, K-L-1=q$ with $2 a=p q$ (a multiple of two integers), then $2 K-1=p+q$ and $2 L+1=p-q$ so one of p and q is odd and the other is even. In this case, $K=\frac{p+q+1}{2}, L=\frac{p-q-1}{2}$. Hence

$$
\begin{aligned}
& M=\frac{(p+q+1)(p+q+3)}{4}-p \\
& N=\frac{(p-q-1)(p-q-3)}{4}+q
\end{aligned}
$$

In conclusion, we have:

Theorem 2.3. Let $m=4 M$ and $n=4 N$ be given integers.
(1) If $M-N$ is odd or is a product of even integers, then the equations (2-3) have no integer solution (k, l)
(2) If $M-N=p q$ is a product of an even integer and an odd integer such that

$$
\begin{aligned}
& M=\frac{(p+q+1)(p+q+3)}{4}-p, \\
& N=\frac{(p-q-1)(p-q-3)}{4}+q,
\end{aligned}
$$

then $(k, l)=(p+q+1, p-q-1)$ is an integer solution of the equations (2-3).

Example 2.4.

(1) Given $(m, n)=(12,8)$ as in Example 2.2, $M-$ $N=3-2=1$ is odd. By Theorem 2.3, the equations $(2-3)$ with $(m, n)=(12,8)$ have no integer solution (k, l)
(2) Consider $(m, n)=(20,12)$ Then

$$
M-N=5-3=2=p q
$$

Taking $p=1$ and $p=2$ we can see that

$$
M=\frac{(p+q+1)(p+q+3)}{4}-p
$$

and

$$
N=\frac{(p-q-1)(p-q-3)}{4}+q
$$

hold. Notice that the other choices for (p, q) do not satisfy the above identities. Hence by Theorem 2.3, $(k, l)=(4,-2)$ is an integer solution of the equations (2-3).
(3) Consider $(m, n)=(52,20)$ Then $M=13, N=5$ and $M-N=8$ Taking $p=-1$ and $q=-8$ we can see that

$$
M=\frac{(p+q+1)(p+q+3)}{4}-p
$$

and

$$
N=\frac{(p-q-1)(p-q-3)}{4}+q
$$

hold. By Theorem 2.3, $(k, l)=(-8,6)$ is an integer
solution of the equations (2-3).
2.2.2. Case 2: $m=4 M+1, n=4 N+2$. With $k=2 K$ +1 and $l=2 L$ in (2-3), we have

$$
M=K^{2}+K-L, N=L^{2}-K
$$

and so an hyperbola equation

$$
K^{2}=\left(L+\frac{1}{2}\right)^{2}=M-N-\frac{1}{4}
$$

Hence

$$
(2 K)^{2}-(2 L+1)^{2}=4(M-N)-1
$$

If $\quad 2 K+2 L+1=p, \quad 2 K-2 L-1=q \quad$ with $4(M-N)-1=p q$ then $4 K=p+q$ and $4 L=p-q-2$ Remark that $(p, q) \equiv(1,3)$ or $(3,1) \bmod 4$. Hence

$$
M=\left(\frac{p+q}{4}\right)^{2}+\frac{q+1}{2}, \quad N=\left(\frac{p-q}{4}\right)^{2}+\frac{2 q+1}{4} .
$$

In conclusion, we have:

Theorem 2.5. Let $m=4 M+1$ and $n=4 N+2$ be given integers. Let $4(M-N)-1=p q$ be a product of two odd integers such that

$$
M=\left(\frac{p+q}{4}\right)^{2}+\frac{q+1}{2}, N=\left(\frac{p-q}{4}\right)^{2}+\frac{2 q+1}{4} .
$$

Then $(k, l)=\left(\frac{p+q}{2}+1, \frac{p-q}{2}-1\right)$ is an integer solution of the equations (2-3).

Example 2.6. Consider $(m, n)=(9,6)$ Then $M=2$, $N=1$ and $M-N=1$ and $4(M-N)-1=3$ With $p=3$ and $q=1$ we can see that

$$
M=\left(\frac{p+q}{4}\right)^{2}+\frac{q+1}{2} \text { and } N=\left(\frac{p-q}{4}\right)^{2}+\frac{2 q+1}{4} \text { hold. }
$$

By Theorem 2.5, $(k, l)=(3,0)$ is an integer solution of the equations (2-3).
2.2.3.Case 3: $m=4 M+2, n=4 N+1$ With $k=2 K$ and $l=2 L+1$ in (2-3), we have

$$
M=K^{2}-L-1, \quad N=L^{2}+L+R
$$

and so an hyperbola equation

$$
\left(K-\frac{1}{2}\right)^{2}-(L+1)^{2}=M-N+\frac{1}{4}
$$

Hence

$$
(2 K-1)^{2}-(2(L+1))^{2}=4(M-N)+1
$$

If $\quad 2 K+2 L+1=p, \quad 2 K-2 L-3=q \quad$ with $4(M-N)+1=p q$ then $4 K=p+q+2$ and $4 L=p-q-4$ Remark that $(p, q) \equiv(1,1)$ or $(3,3) \bmod$ 4. Hence

$$
M=\left(\frac{p+q}{4}\right)^{2}+\frac{2 q+1}{4}, N=\left(\frac{p-q}{4}\right)^{2}+\frac{q+1}{2}
$$

In conclusion, we have:

Theorem 2.7. Let $m=4 M+2$ and $m=4 M+1$ be given integers. Let $4(M-N)+1=p q$ be a product of two odd integers such that

$$
M=\left(\frac{p+q}{4}\right)^{2}+\frac{2 q+1}{4}, \quad N=\left(\frac{p-q}{4}\right)^{2}+\frac{q+1}{2} .
$$

Then $(k, l)=\left(\frac{p+q}{2}+1, \frac{p-q}{2}-1\right)$ is an integer solution of the equations (2-3).

Example 2.8. Consider $(m, n)=(6,5)$ Then $M=1$, $N=1$ and $4(M-N)+1=1$ Taking $p=1$ and $q=1$ we can see that
$M=\left(\frac{p+q}{4}\right)^{2}+\frac{2 q+1}{4}$ and $N=\left(\frac{p-q}{4}\right)^{2}+\frac{q+1}{2}$ hold.
By Theorem 2.5, $(k, l)=(2,-1)$ is an integer solution of the equations (2-3).
2.2.4. Case 4: $m=4 M+3, \quad n=4 N+3$. With $k=2 K+1$ and $l=2 L-1$ in (2-3), we have

$$
M=K^{2}+K-L, N=L^{2}-L+K
$$

and so an hyperbola equation

$$
K^{2}-L^{2}=M-N
$$

If $K+L=p, K-L=q$ with $M-N=p q$ (a multiple of two integers), then $2 K=p+q$ and $2 L=p-q$ so p and q share the even-odd parity. In this case,

$$
\begin{gathered}
K=\frac{p+q}{2}, L=\frac{p-q}{2} . \text { Hence } \\
M=\left(\frac{p+q}{2}\right)^{2}+q, \quad N=\left(\frac{p-q}{2}\right)^{2}+q .
\end{gathered}
$$

In conclusion, we have:

Theorem 2.9. Let $m=4 M+3$ and $n=4 N+3$ be given integers.
(1) If $M-N=p q$ is a product of two even integers or a product of two odd integers such that

$$
M=\left(\frac{p+q}{2}\right)^{2}+q, \quad N=\left(\frac{p-q}{4}\right)^{2}+q
$$

then $(k, l)=(p+q+1, p-q-1)$ is an integer solution of the equations (2-3).
(2) If $M-N$ cannot be expressed as a product of two even integers or as a product of two odd integers, then the equations (2-3) have no integer solution (k, l).

Example 2.10.

(1) Consider $(m, n)=(11,7)$ Then $M=2$ and $N=1$, hence $M-N=1=p q, p=q= \pm 1$. With $p=1$ and $q=1$ we can see that

$$
M=\left(\frac{p+q}{2}\right)^{2}+q \text { and } N=\left(\frac{p-q}{4}\right)^{2}+q \text { hold. }
$$

By Theorem 2.9, $(k, l)=(3,-1)$ is an integer solution of the equations (2-3).
(2) Consider $(m, n)=(19,11)$ Then $M=4$ and $N=2$ hence $M-N=2$ By Theorem 2.9, the equations (2-3) have no integer solution (k, l).

The following theorem states about the "uniqueness" of square root of $A_{m, n}$ whenever it exists.

Theorem 2.11.

(1) If the pair (k, l) satisfies the equations (2-3), then $(-k, l)$ satisfies the equations (2-5), and the vice versa.
(2) If the pair (k, l) satisfies the equations (2-3), then (k, l) is unique.
(3) If the pair (k, l) satisfies the equations (2-3), then the associated equation $x^{3}-k x^{2}+l x+1=0$ has 3 distinct roots.
(4) If β is a root of $x^{3}-k x^{2}+l x+1=0$ then $-\beta$ is a root of $x^{3}+k x^{2}+l x-1=0$

Proof. The proofs of (1) and (4) are trivial.

For (2), assume that

$$
k^{2}-2 l=m=p^{2}-2 q, l^{2}+2 k=n=q^{2}+2 p
$$

Then
$(k+p)(k-p)=2(l-q),(l+q)(l-q)=-2(k-p),(2-6)$ hence $k=p \Leftrightarrow l=q$ Assume further that $k \neq p$ and $l \neq q$ Thus we obtain

$$
(k+p)(l+q)=-4
$$

If $k+p= \pm 1$ and $l+q=\mp 4$ then by (2-6), $\pm 2 k-1$ $=4(l \pm 2)$ a contradiction. If $k+p=2$ and $l+q=-2$ then by (2-6), $k=l+2$ hence $m=k^{2}-2 l=l^{2}+2 l+4$ and $n=l^{2}+2 k=l^{2}+2 l+4$ a contradiction as $m>n$ If $k+p=-2$ and $l+q=2$ then by (2-6), $k=-1$ hence $\mathrm{m}=k^{2}-2 l=l^{2}-2 l=l^{2}+2 k=n \quad$ a contradiction. Hence (2) is proved.

Let B be the companion matrix of the equation $x^{3}-k x^{2}+l x+1=0$. By (2-3), B^{2} has the characteristic equation $x^{3}-m x^{2}+n x-1=0$. Thus B^{2} has 3 distinct positive real eigenvalues. This implies that B has 3 distinct eigenvalues, which are roots of the equation $x^{3}-k x^{2}+l x+1=0$. This proves (3).

Remark 2.12. Suppose that (p, q) is a pair of integers satisfying a condition in Theorem 2.3, 2.5, 2.7 or 2.9. Then this pair must be unique, depending only on (m, n) because of Theorem 2.11. (2).

Theorem 2.11 above says that for the given Lie group $\operatorname{Sol}_{m, n}^{4}$ if there exists (k, l) satisfying (2-3) and hence (2-5) then there is exactly one pair $(\sqrt[U]{A},-\sqrt[U]{A})$ of two square roots of $A_{m, n}$ which is one of the following:

$$
\begin{aligned}
& (\sqrt[U]{A},-\sqrt[U]{A})=\left(\sqrt[X]{A},-\frac{X}{A}\right),(\sqrt[Y]{A},-\sqrt[Y]{A}) \\
& (\sqrt[Z]{A},-\sqrt[Z]{A}),(-I \cdot \sqrt[I]{A}, \sqrt[I]{A}) .
\end{aligned}
$$

Each pair except $(\sqrt[-I]{A}, \sqrt[I]{A})$ will give rise to one Bieberbach group of $\mathrm{Sol}_{m, n}^{4}$ with trivial holonomy group (i.e., a lattice of $\mathrm{Sol}_{m, n}^{4}$), and two Bieberbach groups of $\operatorname{Sol}_{m, n}^{4}$ with holonomy group \mathbb{Z}_{2} For example, if $(\sqrt[U]{A},-\sqrt[U]{A})=(\sqrt[X]{A},-\sqrt{X} \sqrt{A})$ then

$$
\begin{aligned}
& \Gamma=\mathbb{Z}^{3} \times{ }_{A_{m, n}} \mathbb{Z} \cong \mathbb{Z}^{3} \times{ }_{A} \mathbb{Z}, \\
& \Pi_{X} \cong \mathbb{Z}^{3} \times{ }_{\sqrt[X]{A}}\left(\frac{1}{2} \mathbb{Z}\right), \quad \Pi_{-X} \cong \mathbb{Z}^{3} \times{ }_{-X \sqrt{A}}\left(\frac{1}{2} \mathbb{Z}\right)
\end{aligned}
$$

with holonomy groups $\{1\},<X>$, and $<-X>$, respectively. When $A_{m, n}$ has a pair of square roots $(\sqrt[-I]{A}, \sqrt[I]{A})$ $\mathrm{Sol}_{m, n}^{4}$ has always a lattice, and has one Bieberbach group

$$
\Pi_{-I} \simeq \mathbb{Z}^{3} \times{ }_{-I \sqrt{A}}\left(\frac{1}{2} \mathbb{Z}\right)
$$

with holonomy group $<-I>=\{ \pm I\}$. Since $\sqrt[I]{A}$ has 3 distinct real eigenvalues, the associated group

$$
\Pi_{I} \cong \mathbb{Z}^{3} \times\left(\frac{1}{\sqrt{A}} \mathbb{Z}\right)
$$

is a lattice of $\mathrm{Sol}_{k, l}^{4}$ This is not a Bieberbach group of $\operatorname{Sol}_{m, n}^{4}$ (with holonomy group \mathbb{Z}_{2}).

Example 2.13. If $(m, n)=(6,5)$ then it satisfies the conditions (3-4) in [6] and $(k, l)=(2,-1)$ satisfies the equations (2-3), see Example 2.8. Take

$$
\sqrt{A}=\left[\begin{array}{ccc}
0 & 0 & -1 \\
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right], \quad A=(\sqrt{A})^{2}=\left[\begin{array}{ccc}
0 & 1 & -2 \\
0 & 1 & -1 \\
1 & -2 & 5
\end{array}\right]
$$

Note that A is conjugate to $A_{m, n}=A_{6.5}$. By a simple observation, we can see that the characteristic equation $x^{3}-2 x^{2}-x+1=0$ of \sqrt{A} has eigenvalues $\sqrt{\alpha_{1}}$, $-\sqrt{\alpha_{2}}$, and $\sqrt{\alpha_{3}}$. This shows that $\sqrt{A}=\sqrt[Y]{A}$ and $\operatorname{Sol}_{9,6}^{4}$ has Bieberbach group Π_{Y} with holonomy group \mathbb{Z}_{2} By (1) in Theorem 2.11, $(k, l)=(-2,-1)$ satisfies the equations (2-5). By (4) in Theorem 2.11, the associated equation $x^{3}+2 x^{2}-x-1=0$ has three distinct roots $-\sqrt{\alpha_{1}}, \sqrt{\alpha_{2}}$, and $-\sqrt{\alpha_{3}}$ This implies $\operatorname{Sol}_{6.5}^{4}$ has Bieberbach group Π_{-Y} with holonomy group \mathbb{Z}_{2} Finally, by (2) in Theorem 2.11, the Bieberbach groups Π_{Y} and Π_{-Y} of $\operatorname{Sol}_{9,6}^{4}$ are the only Bieberbach groups with holonomy group \mathbb{Z}_{2}.

Example 2.14. For other examples, if $(m, n)=(9$, $6)$ then it satisfies the conditions (3-4) in [6] and $(k$, $l)=(3,0)$ satisfies the equations $(2-3)$, see Example 2.6. Hence we can see that Sol $_{9,6}^{4}$ two Bieberbach groups Π_{Z} and Π_{-Z} with holonomy group \mathbb{Z}_{2}.

If $(m, n)=(37,26)$ then it satisfies the conditions (3-4) in [6] and $(k, l)=(-5,-6)$ satisfies the equations (2-3). Hence we can see that $\operatorname{Sol}_{37,26}^{4}$ two Bieberbach
groups Π_{X} and Π_{-X} with holonomy group \mathbb{Z}_{2}.

Example 2.15. Consider $(m, n)=(52,20)$ This pair satisfies the conditions (3-4) in [6] and $(k, l)=(-8$, 6) satisfies the equations (2-3), see Example 2.4. The associated equation $x^{3}+8 x^{2}+6 x+1=0$ has 3 negative roots, hence the equation $x^{3}-8 x^{2}+6 x-1=0$ associated with $(k, l)=(8,6)$ has 3 positive roots. Consequently, $\operatorname{Sol}_{52,20}^{4}$ has only one Bieberbach group
$\Pi_{-I} \cong \mathbb{Z}^{3} \times{ }_{-\sqrt[l]{A}}\left(\frac{1}{2} \mathbb{Z}\right)$ with holonomy group $\{ \pm I\}$.
The group $\Pi_{I} \cong \mathbb{Z}^{3} \times\left(\frac{1}{\sqrt{A}}\left(\frac{1}{2} \mathbb{Z}\right)\right.$ is a lattice of $\operatorname{Sol}_{8,6}^{4}$

Theorem 2.16. The Lie group $\mathrm{Sol}_{m, n}^{4}$ has a unique, up to isomorphism, crystallographic group with torsion element and with holonomy group \mathbb{Z}_{2}.
$<\Gamma,(0,0,-I)>=\Gamma \times \mathbb{Z}_{2}$.
The Lie group $\mathrm{Sol}_{m, n}^{4}$ has a Bieberbach group with holonomy group \mathbb{Z}_{2} if and only if the simultaneous equations (2-3) have a pair (k, l) of integer solution. If this is the case, then $\mathrm{Sol}_{m, n}^{4}$ has two Bieberbach groups, up to isomorphism,

$$
\mathbb{Z}^{3} \times{ }_{\sqrt[U]{A}}\left(\frac{1}{2} \mathbb{Z}\right), \mathbb{Z}^{3} \times{ }_{-U \sqrt{A}}\left(\frac{1}{2} \mathbb{Z}\right)
$$

where $U \in\{X, Y, Z\}$, or has one Bieberbach group, up to isomorphism,

$$
\mathbb{Z}^{3} \times\left(\frac{1}{-\sqrt{A}}\left(\frac{\mathbb{Z}}{2}\right)\right.
$$

2.3. Case $\Phi=\mathbb{Z}_{2}^{2}$ or \mathbb{Z}_{2}^{3} Let Π be a crystallographic group of $\mathrm{Sol}_{m, n}^{4}$ fitting the diagram (2-4). Let Φ^{\prime} be and index 2 subgroup of Φ^{\prime} By pulling back the diagram (2-4) via the inclusion $i: \Phi^{\prime} \rightarrow \Phi$ we obtain the following commutative diagram

where Π_{Φ} is a crystallographic group of $\mathrm{Sol}_{m, n}^{4}$ with
holonomy group Φ^{\prime} Assume that Π is a Bieberbach group. Then Π_{Φ} is also Bieberbach group for any subgroup Φ^{\prime} of Φ Let U, V be nontrivial generators of Φ. With $\Phi^{\prime}=<U>$ because Π_{Φ} is torsion-free, the discussion in Subsection 2.2 tells that $\left(\frac{s}{2}, U\right) \in$ $\mathbb{Z}_{\Phi} S U B S E T \mathbb{Z}_{\Phi}$. Similarly, we have $\left(\frac{s}{2}, V\right) \in \mathbb{Z}_{\Phi}$. Hence $\left(\frac{s}{2}, U\right)\left(\frac{s}{2}, V\right)=(s, U V)=(s, I)(0, U V)$. This forces $(0, U V) \in \mathbb{Z}_{\Phi}$ which implies from subsection 2.2 again that when $\Phi^{\prime}=<U V, \Pi_{\Phi}$ is not torsion-free. This is a contradiction. Consequently, we have

Theorem 2.17. The Lie group $\mathrm{Sol}_{m, n}^{4}$ has no Bieberbach group with holonomy group \mathbb{Z}_{2}^{2} or \mathbb{Z}_{2}^{3}

Now, let Π be a crystallographic group of $\operatorname{Sol}_{m, n}^{4}$ with holonomy group $\mathbb{Z}_{2}^{2}=<U$, $V>$ so that for some proper $\Phi^{\prime} \subset \Phi, \Pi_{\Phi^{\prime}}$ is non-Bieberbach, crystallographic group. By Theorem 2.16, we must have $\left.\Phi^{\prime}=<-\Gamma\right\rangle$, and $\Pi_{\Phi^{\prime}}=\Gamma \times \mathbb{Z}_{2}$. We may assume that $V=-I$ Then U must be one of $\pm X, \pm Y$, and $\pm Z$ By Theorem 2.16 again, when $\Phi^{\prime}=<U>$ we must have $\Pi_{\Phi^{\prime}}=\mathbb{Z}^{3} \times{ }_{\sqrt[U]{A}}\left(\frac{1}{2} \mathbb{Z}\right)$ Consequently, we have

Theorem 2.18.

(1) If $\mathrm{Sol}_{m, n}^{4}$ admits a Bieberbach group
$\mathbb{Z}^{3} \times{ }_{\sqrt[U]{A}}\left(\frac{1}{2} \mathbb{Z}\right)$ (and hence a Bieberbach group
$\mathbb{Z}^{3} \times{ }_{-U \sqrt{A}}\left(\frac{1}{2} \mathbb{Z}\right)$) with holonomy group $\mathbb{Z}_{2}=<U>$ (and $\mathbb{Z}_{2}=<-U>$ respectively) where $U \in\{ \pm X, \pm Y, \pm Z\}$ then $\operatorname{Sol}_{m, n}^{4}$ admits a unique, up to isomorphism, crystallographic group

$$
\mathbb{Z}^{3} \times{ }_{\sqrt[U]{A}}\left(\frac{1}{2} \mathbb{Z}\right) \times \mathbb{Z}_{2}\left(\cong\left(\mathbb{Z}^{3} \times{ }_{-U \sqrt{A}}\left(\frac{1}{2} \mathbb{Z}\right)\right) \times \mathbb{Z}_{2}\right)
$$

where the holonomy group is $\mathbb{Z}_{2}^{2}=\{ \pm I, \pm U\}$.
(2) If $\mathrm{Sol}_{m, n}^{4}$ does not admit a Bieberbach group
with holonomy group \mathbb{Z}_{2} then $\operatorname{Sol}_{m, n}^{4}$ does not admit a crystallographic group with holonomy group \mathbb{Z}_{2}^{2}.

Theorem 2.19. The Lie group $\operatorname{Sol}_{m, n}^{4}$ does not admit a crystallographic group with holonomy group \mathbb{Z}_{2}^{3}.
Proof. Assume that $\operatorname{Sol}_{m, n}^{4}$ admits a crystallographic group with holonomy group $\Phi=\{ \pm I, \pm X, \pm Y$, $\pm Z\}$. By Theorem 2.16, every element U of $\Phi-\{ \pm I\}$ must be lifted as an element $\left(\frac{s}{2}, U\right)$ in \mathbb{Z}_{Φ} Since $\left(\frac{s}{2}, X\right),\left(\frac{s}{2}, Y\right) \in \mathbb{Z}_{\Phi}$, we have $\left(\frac{s}{2}, X\right)\left(\frac{s}{2}, Y\right)=(s,-Z)$ $=(s, I)(0,-Z)$. This implies that $-Z \in \Phi$ is lifted to $(0$, $-Z) \in \mathbb{Z}_{\Phi}$ a contradiction.

Acknowledgments

This research was supported by Kumoh National Institute of Technology (2021).

References

[1] P. Scott, "The geometries of 3-manifolds", Bull. London Math. Soc., vol. 15, p. 401-487, 1983.
[2] W. P. Thurston, Three-dimensional Geometry and Topology, vol. 1, Princeton University Press, Princeton, NJ, 1997.
[3] K. Y. Ha and J. B. Lee, "Crystallographic groups of Sol", Math. Nachr., vol. 286, p. 1614-1667, 2013.
[4] K. B. Lee and S. Thuong, "Infra-solvmanifolds of Sol_{1}^{4} ", J. Korean Math. Soc., vol. 52, p. 1209-1251, 2015.
[5] S. V. Thuong, "Classification of closed manifolds with Sol_{1}^{4}-geometry", Geometriae Dedicata, vol. 199, p. 373-397, 2019.
[6] W. S. Yoo, "On the crystallographic group of $\mathrm{Sol}_{m, n}^{4} "$, J. Chungcheong Math. Soc., vol. 34, No. 1, p. 17-26, 2021.
[7] J. A. Hillman, Four-manifolds, Geometries and Knots, Geometry \& Topology Monographs, 5, Geometry \& Topology Publications, Coventry, 2002.

[^0]: ${ }^{\dagger}$ Corresponding author : wsyoo@kumoh.ac.kr

