DOI QR코드

DOI QR Code

A Study on the Curing Behavior of Epoxy Resin Incorporating PEI as a Toughening Agent

PEI를 강인화제로 도입한 에폭시 수지의 경화거동 연구

  • Lee, Jae Min (Department of Organic Materials Engineering, Chungnam National University) ;
  • Lee, Min Jun (Department of Organic Materials Engineering, Chungnam National University) ;
  • Lee, Pil Gyu (Department of Organic Materials Engineering, Chungnam National University) ;
  • Kwon, MiYeon (Korea Institute of Industrial Technology) ;
  • Lee, Seung Goo (Department of Organic Materials Engineering, Chungnam National University)
  • 이재민 (충남대학교 유기소재.섬유시스템공학과) ;
  • 이민준 (충남대학교 유기소재.섬유시스템공학과) ;
  • 이필규 (충남대학교 유기소재.섬유시스템공학과) ;
  • 권미연 (한국생산기술연구원) ;
  • 이승구 (충남대학교 유기소재.섬유시스템공학과)
  • Received : 2021.09.15
  • Accepted : 2021.10.12
  • Published : 2021.10.31

Abstract

In addition to being cost effective, epoxy resin has excellent mechanical, electrical, and chemical characteristics with minimal shrinkage during processing. Additionally, it produces negligible volatile substances during curing, therefore rendering it widely applicable in various industrial fields, for instance, composite materials. However, due to the densely crosslinked microstructure, it is brittle and has relatively poor resistance to crack initiation and propagation, which affects its durability. Hence, it is necessary to improve the toughness and the heat resistance of epoxy resin. To this end, a method of introducing super engineering plastic in the form of particles was investigated. In this study, polyetherimide (PEI), which has excellent thermal, mechanical, and chemical properties, was applied as a toughening agent to an epoxy resin, and the change in the curing behavior of the epoxy resin when the content of the PEI was changed was observed. In addition, to improve the dispersibility of the PEI particles in the epoxy resin, the toughening effect of the PEI was modified through amination.

Keywords

Acknowledgement

본 연구는 한국산업기술평가관리원 산업소재 핵심기술개발사업(과제번호: 10063368)의 지원으로 수행되었으며, 이에 감사드립니다.

References

  1. C. H. Lee, "Useful Epoxy Formulation Handbook", Advanced Engineering Thechnolohy Provider, 2nd ed., 2015.
  2. T. Zang, J. Tan, X. Han, Q. Fu, Y. Xu, and X. Zhu, "Novel Epoxy-ended Hyperbranched Polyether Derived from Xylitol as Sustainable Tougheners for Epoxy Resin", Polym. Test., 2021, 94, 107053. https://doi.org/10.1016/j.polymertesting.2021.107053
  3. R. Auvergne, S. Caillol, G. David, B. Boutevin, and J. P. Pascault, "Biobased Thermosetting Epoxy: Present and Future", Chem. Rev., 2014, 114, 1082-1115. https://doi.org/10.1021/cr3001274
  4. M. Sajjad, Z. Zhao, X. Zhu, Y. Shi, and C. Zhang, "Transition Molecular Structures between Block Copolymers and Hyperbranched Copolymers Suitable for Toughening Epoxy Thermosets", Compos. Commun., 2021, 25, 100762. https://doi.org/10.1016/j.coco.2021.100762
  5. L. Xiao, S. Li, Y. Wang, W. Li, J. Chen, J. Huang, and X. Nie, "Toughening Epoxy Resin by Constructing π-π Interaction between a Tung Oil-based Modifier and Epoxy", Ind. Crops Prod., 2021, 170, 113723. https://doi.org/10.1016/j.indcrop.2021.113723
  6. H. B. Gu, C. Ma, J. W. Gu, J. Guo, X. R. Yan, J. N. Huang, Q. Y. Zhang, and Z. H. Guo, "An Overview of Multifunctional Epoxy Nanocomposites", J. Mater. Chem., 2016, 4, 5890-5906. https://doi.org/10.1039/C6TA00612D
  7. S. F. Chen, Z. J. Xu, and D. H. Zhang, "Synthesis and Application of Epoxy-ended Hyperbranched Polymers", Chem. Eng. J., 2018, 343, 283-302. https://doi.org/10.1016/j.cej.2018.03.014
  8. L. Ruiz-Perez, G. J. Royston, J. P. A. Fairclough, and A. J. Ryan, "Toughening by Nanostructures", Polymer, 49, 2018, 4475-4488. https://doi.org/10.1016/j.polymer.2008.07.048
  9. M. Yourdkhani and P. Hubert, "A Systematic Study on Dispersion Stability of Carbon Nanotube-modified Epoxy Resins", Carbon, 2015, 81, 251-259. https://doi.org/10.1016/j.carbon.2014.09.056
  10. J. P. Yang, G. Yang, G. Xu, and S. Y. Fu, "Cryogenic Mechanical Behaviors of MMT/epoxy Nanocomposites", Compos. Sci. Technol., 2014, 67, 2934-2940. https://doi.org/10.1016/j.compscitech.2007.05.012
  11. L. Chen, S. Chai, K. Liu, N. Ning, J. Gao, Q. Liu, F. Chen, and Q. Fu, "Enhanced Epoxy/silica Composites Mechanical Properties by Introducing Graphene Oxide to the Interface", ACS Appl. Mater. Interfaces, 2012, 4, 4398-4404. https://doi.org/10.1021/am3010576
  12. I. Hamerton, L. T. McNamara, B. J. Howlin, P. A. Smith, P. Cross, and S. Ward, "Toughening Mechanisms in Aromatic Polybenzoxazines Using Thermoplastic Oligomers and Telechelics", Macromolecules, 2014, 47, 1946-1958. https://doi.org/10.1021/ma5002436
  13. Y. Zhao, Z. K. Chen, Y. Liu, H. M. Xiao, Q. P. Feng, and S. Y. Fu, "Simultaneously Enhanced Cryogenic Tensile Strength and Fracture Toughness of Epoxy Resins by Carboxylic Nitrile-butadiene Nano-rubber", Compos. Part A, 66, 2013, 178-187.
  14. P. P. Vijayan, M. G. Harikrishnan, D. Puglia, P. P. Vijayan, J. M. Kenny, and S. Thomas, "Solvent Uptake of Liquid Rubber Toughened Epoxy/Clay Nanocomposites", Adv. Polym. Technol., 2016, 35, 1-7.
  15. M. R. Dadfar and F. Ghadami, "Effect of Rubber Modification on Fracture Toughness Properties of Glass Reinforced Hot Cured Epoxy Composites", Mater. Des., 2013, 47, 16-20. https://doi.org/10.1016/j.matdes.2012.12.035
  16. Y. H. Tang, L. Ye, Z. Zhang, and K. Friedrich, "Interlaminar Fracture Toughness and CAI Strength of Fiber-reinforced Composites with Nanoparticles-A Review", Compos. Sci. Technol., 2013, 86, 26-37. https://doi.org/10.1016/j.compscitech.2013.06.021
  17. S. P. Li, Q. S. Wu, H. J. Zhu, Q. Lin, and C. S. Wang, "Impact Resistance Enhancement by Adding Core-shell Particle to Epoxy Resin Modified with Hyperbranched Polymer", Polymers, 2017, 9, 684. https://doi.org/10.3390/polym9120684
  18. S. Li, Q. Lin, and C. Cui, "The Effect of Core-shell Particles on the Mechanical Performance of Epoxy Resins Modified with Hyperbranched Polymers", J. Mater. Res. Technol., 2016, 31, 1393-1402. https://doi.org/10.1557/jmr.2016.174
  19. E. Girard-Reydet, V. Vicard, J. P. Pascault, and H. Sautereau, "Polyetherimide-modified Epoxy Networks: Influence of Cure Conditions on Morphology and Mechanical Properties", J. Appl. Polym. Sci., 1997, 65, 2433-2445. https://doi.org/10.1002/(SICI)1097-4628(19970919)65:12<2433::AID-APP15>3.0.CO;2-1
  20. J. H. Hodgkin, G. P. Simon, and R. Varley, "Thermoplastic Toughening of Epoxy Resins: A Critical Review", Polym. Adv. Technol., 1998, 9, 3-10. https://doi.org/10.1002/(SICI)1099-1581(199801)9:1<3::AID-PAT727>3.0.CO;2-I
  21. S. D. Lee and B. H. Ahn, "Synthesis of Modified Polyetherimide and Toughening of Epoxy Resin", Polymer, 2005, 29, 231-236.
  22. L. Bonnaud, J. P. Pascault, H. Sautereau, J. Q. Zhao, and D. M. Jia, "Use of Reactive Polyetherimide to Modify Epoxy Thermosets. I. Synthesis of an Amino-grafted Polyetherimide", Eur. Polym. J., 2004, 40, 2637-2643. https://doi.org/10.1016/j.eurpolymj.2004.05.029