DOI QR코드

DOI QR Code

3D Finite Element Model on the Density Difference of Plain Fabrics Manufactured with PBO/m-aramid/SiC Fibers and Thermal Protection Performance Simulation

PBO/m-aramid 평직물과 SiC 섬유로 제조된 평직물의 3D 유한요소모델 생성 및 열보호 성능 시뮬레이션 연구

  • Received : 2021.10.03
  • Accepted : 2021.10.23
  • Published : 2021.10.31

Abstract

In this study, a 3D model of a PBO/m-aramid and SiC fabric was created in a virtual space to evaluate the thermal protection performance of each material used in firefighting suits, and a thermal protection performance simulation study was conducted with an aim to reduce the material development lead time and development cost. To compare the thermal protection performance of the PBO/m-aramid fiber woven fabric, which is the material used for the outer fabric of the existing fire-fighting clothing, and the SiC fiber woven fabric with different fabric densities (high, medium, and low density), a thermal protection performance analysis was conducted for each yarn model after creating the geometry of the fabric model and the finite element model using virtual engineering software. To analyze the thermal protection performance according to the density difference of the SiC fiber woven fabrics, three-dimensional (3D) models of the three types of fabrics with low, medium, and high densities were created. The thermal protection performance analysis compared the thermal protection performance against the radiation heat source exposure of the PBO/m-aramid woven fabrics and the SiC woven fabrics according to density as stated by the KS K ISO 6942 radiant heat protection test method, which is the concrete test standard. A comparison revealed that the thermal protection performance of the SiC material was superior to that of the PBO/m-aramid material, and the high-density woven SiC fabric exhibited the best thermal protection performance.

Keywords

Acknowledgement

본 연구는 산업통장지원부의 안전보호융복합섬유산업육성(R&D) 사업이 지원하는 연구과제(20003890)로 수행된 것이며, 지원에 대해 진심으로 감사드립니다.

References

  1. S. J. Cho, H. Choi, and J. H. Youk, "Evaluation of PBI Nanofiber Membranes as a High-temperature Resistance Separator for Lithium-ion Batteries", Fiber. Polym., 2020, 21, 993-998. https://doi.org/10.1007/s12221-020-9955-z
  2. Q. W. Wang, K. H. Yoon, and B. G. Min, "Chemical and Physical Modification of Poly(p-phenylene benzobisoxazole) Polymers for Improving Properties of the PBO Fibers. I. Ultraviolet-ageing Resistance of PBO Fibers with Naphthalene Moiety in Polymer Chain", Fiber. Polym., 2015, 16, 1-7. https://doi.org/10.1007/s12221-015-0001-5
  3. L. Chen, Z. Hu, L. Xing, J. Wu, N. Zheng, L. Liu, J. He, and Y. Huang, "Processing and Characterization of Nickel-plated PBO Fiber with Improved Interfacial Properties", Fiber. Polym., 2014, 15, 1160-1167. https://doi.org/10.1007/s12221-014-1160-5
  4. L. Tang, X. Fan, Y. Tang, J. Zhang, J. Kong, and J. Gu, "Calciadoped Ceria Hybrid Coating Functionalized PBO Fibers with Excellent UV Resistance and Improved Interfacial Compatibility with Cyanate", Appl. Surface Sci., 2021, 569, 151124. https://doi.org/10.1016/j.apsusc.2021.151124
  5. R. A. Elsad, K. A. Mahmoud, Y. S. Rammah, and A. S. Abouhaswa, "Fabrication, Structural, Optical, and Dielectric Properties of PVC-PbO Nanocomposites, as well as Their Gamma-ray Shielding Capability", Radiat. Phys. Chem., 2021, 189, 109753. https://doi.org/10.1016/j.radphyschem.2021.109753
  6. X. Pan, R. Zhang, S. Peng, and Y. Qiu, "Study on the Surface Modification of PBO Fiber under Dielectric Barrier Discharge Treatment", Fiber. Polym., 2010, 11, 372-377. https://doi.org/10.1007/s12221-010-0372-6
  7. B. Song, L. Meng, and Y. Huang, "Preparation and Characterization of (POSS/TiO2)n Multi-coatings Based on PBO Fiber Surface for Improvement of UV Resistance", Fiber. Polym., 2013, 14, 375-381. https://doi.org/10.1007/s12221-013-0375-1
  8. K. Tamargo-Martinez, M. A. Montes-Moran, A. Martinez-Alonso, and J. M. D. Tascon, "Effect of Non-oxidative Plasma Treatments on the Surface Properties of Poly(p-phenylene terephthalamide) (PPTA) and Poly(p-phenylene benzobisoxazole) (PBO) Fibres as Measured by Inverse Gas Chromatography", J. Chromatogr. A, 2020, 1634, 461655. https://doi.org/10.1016/j.chroma.2020.461655
  9. J. Erkmen, H. I. Yavuz, E. Kavci, and M. Sari, "A New Environmentally Friendly Insulating Material Designed from Natural Materials", Const. Build. Mater., 2020, 255, 119357. https://doi.org/10.1016/j.conbuildmat.2020.119357
  10. G. Silva, S. Kim, R. Aguilar, and J. Nakamatsu, "Natural Fibers as Reinforcement Additives for Geopolymers - A Review of Potential Eco-friendly Applications to the Construction Industry", Sustain. Mater. Technol., 2020, 23, e00132. https://doi.org/10.1016/j.susmat.2019.e00132
  11. W. C. Liu, S. Liu, T. Liu, T. Liu, J. Zhang, and H. Liu, "Eco-friendly Post-consumer Cotton Waste Recycling for Regenerated Cellulose Fibers", Carbohydr. Polym., 2019, 206, 141-148. https://doi.org/10.1016/j.carbpol.2018.10.046
  12. S. Agnello, A. Alessi, G. Buscarino, and A. Piazza, "Structural and Thermal Stability of Graphene Oxide-silica Nanoparticles Nanocomposites", J. Alloys Compd., 2017, 695, 2054-2067. https://doi.org/10.1016/j.jallcom.2016.11.044
  13. H. H. Nguyen, J.-I. Choi, H.-K. Kim, and B. Y. Lee, "Mechanical Properties and Self-healing Capacity of Eco-friendly Ultrahigh Ductile Fiber-reinforced Slag-based Composites", Compos. Struct., 2019, 229, 111401. https://doi.org/10.1016/j.compstruct.2019.111401
  14. M. J. Yoo and H. B. Park, "Effect of Hydrogen Peroxide on Properties of Graphene Oxide in Hummers Method", Carbon, 2019, 141, 515-522. https://doi.org/10.1016/j.carbon.2018.10.009
  15. Y. Liu, K. Z. Chen, S. Peng, Y. C. K. Han, M. Yu, and H. Zhang, "Synthesis and Pyrolysis Mechanism of a Novel Polymeric Precursor for SiBN Ternary Ceramic Fibers", Ceram. Int., 2019, 45, 20172-20177. https://doi.org/10.1016/j.ceramint.2019.06.286
  16. B. S. Yilbas, A. Ibrahim, H. Ali, M. Khaled, and T. Laoui, "Hydrophobic and Optical Characteristics of Graphene and Graphene Oxide Films Transferred onto Functionalized Silica Particles Deposited Glass Surface", Appl. Surface Sci., 2018, 442, 213-223. https://doi.org/10.1016/j.apsusc.2018.02.176
  17. M. Arabani and A. Shabani, "Evaluation of the Ceramic Fiber Modified Asphalt Binder", Constr. Build. Mater., 2019, 205, 377-386. https://doi.org/10.1016/j.conbuildmat.2019.02.037
  18. K. Schonfeld and H. Klemm, "Interaction of Fiber Matrix Bonding in SiC/SiC Ceramic Matrix Composites", J. Euro. Ceram. Soc., 2019, 39, 3557-3565. https://doi.org/10.1016/j.jeurceramsoc.2019.05.025
  19. J. K. Lee, Y. J. Bang, C. H. Bang, and J. S. Kwon, "Study on the Thermal Protective Performance Measurements of Fire Fighter's Protective Clothing for Low Level Radiant Heat Exposures", Fire Sci. Eng., 2014, 28, 1-8.
  20. S. H. Yu, J. H Lee, Y. S. Song, Y. C. Shin, and J. H. Sim "Characteristics of Hybrid Composites Utilizing Prepreg Comression Molding on a Stacking Sequence", Text. Sci. Eng., 2018, 55, 356-364. https://doi.org/10.12772/TSE.2018.55.356
  21. B. Kumara, M. R. Haseebuddin, N. R Aghavendra, and K. R. Vishnu Mahesh, "Influence of Sic on Mechanical, Thermal, Fire and Wear Studies of Vinylester/Glass Fibre Composites", Material Today: Proceedings, 2018, 5, 22675-22686. https://doi.org/10.1016/j.matpr.2018.06.644
  22. S. M. Naga, H. F. El-Maghraby, M. Elgamhoudy, and M. A. Saleh, "Characterization and Origin of Failure of SiC/ZTA Composites", Int. J. Refract. Metals and Hard Mater., 2018, 73, 53-57. https://doi.org/10.1016/j.ijrmhm.2018.01.016
  23. C. Bai, J. Zheng, G. A. Rizzi, and P. Colombo, "Low-temperature Fabrication of SiC/geopolymer Cellular Composites", Compos. Part B: Eng., 2018, 137, 23-30. https://doi.org/10.1016/j.compositesb.2017.11.013
  24. Q. Wang and C. Zhang, "Fire Safety Analysis of Building Partition Wall Engineering", Procedia Eng., 2018, 211, 747-754. https://doi.org/10.1016/j.proeng.2017.12.071
  25. R. Ma, J. Shi, W. Lin, and J. Chen, "Synthesis and Sintering of Nanocrystalline SiC Ceramic Powders", Mater. Chem. Phys., 2020, 253, 123445. https://doi.org/10.1016/j.matchemphys.2020.123445
  26. J. D. Arregui-Mena, R. L. Seibert, and T. J. Gerczak, "Characterization of PyC/SiC Interfaces with FIB-SEM Tomography", J. Nucl. Mater., 2021, 545, 152736. https://doi.org/10.1016/j.jnucmat.2020.152736
  27. K. Liu, J. Wang, T. Wu, and H. Sun, "Effects of Carbon Content on Microstructure and Mechanical Properties of SiC Ceramics Fabricated by SLS/RMI Composite Process", Ceram. Int., 2020, 46, 22015-22023. https://doi.org/10.1016/j.ceramint.2020.05.185
  28. H.-Y. Lee, F.-C. Tsui, and Y.-C. Lee, "Structural and Microstructural Studies on SiC-SiO2 Ceramic Composites", Material. Chem. Phys., 2019, 233, 203-212. https://doi.org/10.1016/j.matchemphys.2019.05.064
  29. H. Wang, H. Zhang, Y. Bi, H. Li, L. Lv, and H. Yang, "Effects of Different Catalysts on Performance of Self-bonded SiC Refractories", Ceram. Int., 2021, 47, 27863-27872. https://doi.org/10.1016/j.ceramint.2021.06.215
  30. G. Krupincova, J. Drasarova, and I. Mertova, "Evaluation of Yarn Lateral Deformation", AUTEX Res. J., 2013, 13, 17-21. https://doi.org/10.2478/v10304-012-0018-4