DOI QR코드

DOI QR Code

Introduction of Carbon Nanotubes into Glass Fiber Non-woven Fabrics

탄소나노튜브를 첨가한 유리여재 부직포의 물리적 특성 변화 및 필터 응용 가능성

  • Shin, So Hee (Department of Fiber System Engineering, Dankook University) ;
  • Lee, Won Jun (Department of Fiber System Engineering, Dankook University)
  • 신소희 (단국대학교 파이버시스템공학과) ;
  • 이원준 (단국대학교 파이버시스템공학과)
  • Received : 2021.10.03
  • Accepted : 2021.10.26
  • Published : 2021.10.31

Abstract

Introduction of nanomaterials into filter media has attracted tremendous research interest owing to their excellent efficiency in the removal of fine particulate matter. Whereas glass fiber-based non-woven removes at least 99.97% of dust, pollen, mold, bacteria, and any airborne particles with a size of 0.3 ㎛, their low thermal dimensional stability and decrease in the efficiency for dust removal hinders their recyclability and sustainable usage. Herein, single-walled carbon nanotubes (CNTs) are introduced into the glass fiber filter media (MERV 13 level) to improve the mechanical strength and thermal dimensional stability. Obviously, existing CNTs inside filter media facilitate the structural network formation between glass fibers with a high thermal stability, resulting in a higher onset degradation temperature (Td > 390 ℃). Indeed, their mechanical strength along cross direction (CD) increases by ~0.8 MPa with the addition of isotropic CNT solution. Whereas air-permeability is slightly decreased with the addition of CNTs, their positive effects as mechanical and thermal reinforcements show their potential for filter materials with a hierarchical structure.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 나노융합 혁신제품 기술개발사업(과제번호: 20015624)으로 수행된 연구결과입니다.

References

  1. H. I. Abdel-Shafy and M. S. M. Mansour, "Solid Waste Issue: Sources, Composition, Disposal, Recycling, and Valorization", Egyptian J. Petroleum, 2018, 27, 1275-1290. https://doi.org/10.1016/j.ejpe.2018.07.003
  2. B. Brunekreef, "Air Pollution and Human Health: From Local to Global Issues", Prodedia - Social and Behavioral Sciences, 2010, 2, 6661-6669. https://doi.org/10.1016/j.sbspro.2010.05.010
  3. W. H. Otto, "Relationship of Tensile Strength of Glass Fibers to Diameter", J. Am. Ceram. Soc., 1955, 38, 122-125. https://doi.org/10.1111/j.1151-2916.1955.tb14588.x
  4. Y. Bai, C. B. Han, C. He, G. Q. Gu, J. H. Nie, J. J. Shao, T. X. Xiao, C. R. Deng, and Z. L. Wang, "Washable Multilayer Triboelectric Air FIlter for Efficient Particulate Matter PM2.5 Removal", Adv. Funct. Mater., 2018, 28, 1-8.
  5. M. W. Kim, Y. I. Kim, C. Park, A. Aldalbahi, H. S. Alanazi, S. An, A. L. Yarin, and S. S. Yoon, "Reusable and Durable Electrostatic Air Filter Based on Hybrid Metallized Microfibers Decorated with Metal-organic-framework Nanocrystals," J. Mater. Sci. Technol., 2021, 85, 44-55. https://doi.org/10.1016/j.jmst.2020.12.065
  6. S. J. Choi, K. H. Kim, H. J. Kim, J. S. Yoon, M. J. Lee, K. S. Choi, U. D. Sung, W. T. Park, J. Lee, J. Jeon, J. Im, K. K. Kim, and S. Cho, "Highly Efficient, Flexible, and Recyclable Air Filters Using Polyimide Films with Patterned Thru-holes Fabricated by Ion Milling", Appl. Sci. (Switzerland), 2019, 9, 235. https://doi.org/10.3390/app9020235
  7. X. Zhang, W. Zhang, M. Yi, Y. Wang, P. Wang, J. Xu, F. Niu, and F. Lin, "High-performance Inertial Impaction Filters for Particulate Matter Removal", Scient, Rep., 2018, 8, 1-8.
  8. B. Binek, "The Relative Importance of Brownian Diffusion and other Factors in Aerosol Filtration", Atmospheric Environment, 1967, 1, 605. https://doi.org/10.1016/0004-6981(67)90031-5
  9. S. D. McIvor, M. I. Darby, G. H. Wostenholm, B. Yates, L. Banfield, R. King, and A. Webb, "Thermal Conductivity Measurements of Some Glass Fibre- and Carbon Fibre-reinforced Plastics", J. Mater. Sci., 1990, 25, 3127-3132. https://doi.org/10.1007/BF00587661
  10. G. B. Vaggar, S. C. Kamate, and P. V. Badyankal, "Thermal Properties Characterization of Glass Fiber Hybrid Polymer Composite Materials", Int. J. Eng. Technol. (UAE), 2018, 7, 455-458. https://doi.org/10.14419/ijet.v7i2.8.10490
  11. V. Chinnasamy, S. P. Subramani, S. K. Palaniappan, B. Mylsamy, and K. Aruchamy, "Characterization on Thermal Properties of Glass Fiber and Kevlar Fiber with Modified Epoxy Hybrid Composites", J. Mater. Res. Technol., 2020, 9, 3158-3167. https://doi.org/10.1016/j.jmrt.2020.01.061
  12. H. B. Cho, M. T. T. Huynh, T. Nakayama, S. T. Nguyen, H. Suematsu, T. Suzuki, W. Jiang, S. Tanaka, Y. Tokoi, S. W. Lee, T. Sekino, and K. Niihara, "Densely Packed Linear Assembles of Carbon Nanotube Bundles in Polysiloxane-based Nanocomposite Films", J. Nanomater., 2013, 2013, 564307.
  13. A. J. Clancy, J. Melbourne, and M. S. P. Shaffer, "A One-step Route to Solubilised, Purified or Functionalised Single-walled Carbon Nanotubes", J. Mater. Chem. A, 2015, 3, 16708-16715. https://doi.org/10.1039/C5TA03561A
  14. B. Arash, Q. Wang, and V. K. Varadan, "Mechanical Properties of Carbon Nanotube/polymer Composites", Scient. Rep., 2014, 4, 1-8.
  15. Q. Wang and K. M. Liew, "Mechanical Properties of Carbon Nanotubes", Carbon Nanotubes: New Research, August 2014, 2009, 157-174.
  16. M. Wang, J. Yang, X. You, C. Liao, J. Yan, J. Ruan, and S. Dong, "Nanoinfiltration Behavior of Carbon Nanotube Based Nanocomposites with Enhanced Mechanical and Electrical Properties", J. Mater. Sci. Technol., 2021, 71, 23-30. https://doi.org/10.1016/j.jmst.2020.07.015
  17. C. Wei, "Adhesion and Reinforcement in Carbon Nanotube Polymer Composite", Appl. Phys. Lett., 2006, 88, 093108. https://doi.org/10.1063/1.2181188
  18. W. J. Kowalski and W. P. Bahnfleth, "MERV Filter Models for Aerobiological Applications", National Air Filtration Association, 2017.
  19. B. Dastorian Jamnani, S. Hosseini, S. Rahmanian, S. Abdul Rashid, S. B. Mustapha, and S. Keshan Balavandy, "Grafting Carbon Nanotubes on Glass Fiber by Dip Coating Technique to Enhance Tensile and Interfacial Shear Strength", J. Nanomater., 2015, 16, 306.
  20. W. J. Lee, A. J. Clancy, J. C. Fernandez-Toribio, D. B. Anthony, E. R. White, E. Solano, H. S. Leese, J. J. Vilatela, and M. S. P. Shaffer, "Interfacially-grafted Single-walled Carbon Nanotube/ Poly(vinyl alcohol) Composite Fibers", Carbon, 2019, 146, 162-171. https://doi.org/10.1016/j.carbon.2019.01.075
  21. J. L. Thomason, L. Yang, and R. Meier, "The Properties of Glass Fibres after Conditioning at Composite Recycling Temperatures", Compos. Part A: Appl. Sci. Manuf., 2014, 61, 201-208. https://doi.org/10.1016/j.compositesa.2014.03.001