DOI QR코드

DOI QR Code

Human Milk Oligosaccharides as a Missing Piece in Combating Nutritional Issues during Exclusive Breastfeeding

  • Sudarma, Verawati (Department of Nutrition, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital) ;
  • Hegar, Badriul (Department of Child Health, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital) ;
  • Hidayat, Adi (Department of Public Health, Faculty of Medicine, Trisakti University) ;
  • Agustina, Rina (Department of Nutrition, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital)
  • Received : 2021.05.31
  • Accepted : 2021.09.05
  • Published : 2021.11.15

Abstract

Extensive studies have shown that breast milk is the best source of nutrition for infants, especially during the first six months, because it fulfills almost all of their nutritional needs. Among the many functional building blocks in breast milk, human milk oligosaccharides (HMOs) have been receiving more attention recently. Furthermore, it is the third most common group of compounds in human milk, and studies have demonstrated the health benefits it provides for infants, including improved nutritional status. HMOs were previously known as the 'bifidus factor' due to their 'bifidogenic' or prebiotic effects, which enabled the nourishment of the gastrointestinal microbiota. Healthy gastrointestinal microbiota are intestinal health substrates that increase nutrient absorption and reduce the incidence of diarrhea. In addition, HMOs, directly and indirectly, protect infants against infections and strengthen their immune system, leading to a positive energy balance and promoting normal growth. Non-modifiable factors, such as genetics, and modifiable factors (e.g., maternal health, diet, nutritional status, environment) can influence the HMO profile. This review provides an overview of the current understanding of how HMOs can contribute to the prevention and treatment of nutritional issues during exclusive breastfeeding.

Keywords

References

  1. Section on Breastfeeding. Breastfeeding and the use of human milk. Pediatrics 2012;129:e827-41. https://doi.org/10.1542/peds.2011-3552
  2. Victora CG, Bahl R, Barros AJ, Franca GV, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 2016;387:475-90. https://doi.org/10.1016/S0140-6736(15)01024-7
  3. UNICEF, World Health Organization. Global Breastfeeding Scorecard, 2017. Tracking progress for breastfeeding policies and programmes [Internet]. New York (NY), Geneva: UNICEF, World Health Organization; 2017 [cited 2021 Jul 24]. Available from: https://apps.who.int/nutrition/publications/infantfeeding/global-bf-scorecard-2017.pdf ?ua=1.
  4. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 2012;22:1147-62. https://doi.org/10.1093/glycob/cws074
  5. Urashima T, Asakuma S, Leo F, Fukuda K, Messer M, Oftedal OT. The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv Nutr 2012;3:473S-82S. https://doi.org/10.3945/an.111.001412
  6. Lane JA, Mehra RK, Carrington SD, Hickey RM. The food glycome: a source of protection against pathogen colonization in the gastrointestinal tract. Int J Food Microbiol 2010;142:1-13. https://doi.org/10.1016/j.ijfoodmicro.2010.05.027
  7. Bode L. The functional biology of human milk oligosaccharides. Early Hum Dev 2015;91:619-22. https://doi.org/10.1016/j.earlhumdev.2015.09.001
  8. Pekmez CT, Dragsted LO, Brahe LK. Gut microbiota alterations and dietary modulation in childhood malnutrition - the role of short chain fatty acids. Clin Nutr 2019;38:615-30. https://doi.org/10.1016/j.clnu.2018.02.014
  9. Gough EK, Stephens DA, Moodie EE, Prendergast AJ, Stoltzfus RJ, Humphrey JH, et al. Linear growth faltering in infants is associated with Acidaminococcus sp. and community-level changes in the gut microbiota. Microbiome 2015;3:24. https://doi.org/10.1186/s40168-015-0089-2
  10. Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay DG, et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 2015;3:13. https://doi.org/10.1186/s40168-015-0071-z
  11. McGuire MK, Meehan CL, McGuire MA, Williams JE, Foster J, Sellen DW, et al. What's normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically. Am J Clin Nutr 2017;105:1086-100. https://doi.org/10.3945/ajcn.116.139980
  12. Azad MB, Robertson B, Atakora F, Becker AB, Subbarao P, Moraes TJ, et al. Human milk oligosaccharide concentrations are associated with multiple fixed and modifiable maternal characteristics, environmental factors, and feeding practices. J Nutr 2018;148:1733-42. https://doi.org/10.1093/jn/nxy175
  13. Wu S, Tao N, German JB, Grimm R, Lebrilla CB. Development of an annotated library of neutral human milk oligosaccharides. J Proteome Res 2010;9:4138-51. https://doi.org/10.1021/pr100362f
  14. Jovanovic M, Tyldesley-Worster R, Pohlentz G, Peter-Katalinic J. MALDI Q-TOF CID MS for diagnostic ion screening of human milk oligosaccharide samples. Int J Mol Sci 2014;15:6527-43. https://doi.org/10.3390/ijms15046527
  15. Morrow AL, Newburg DS. Human milk oligosaccharides. In: Neu J, Poindexter B, Polin RA, eds. Gastroenterology and nutrition: neonatology questions and controversies. 3rd ed. Philadelphia: Elsevier, 2019:43-58.
  16. Bode L, Jantscher-Krenn E. Structure-function relationships of human milk oligosaccharides. Adv Nutr 2012;3:383S-91S. https://doi.org/10.3945/an.111.001404
  17. Totten SM, Zivkovic AM, Wu S, Ngyuen U, Freeman SL, Ruhaak LR, et al. Comprehensive profiles of human milk oligosaccharides yield highly sensitive and specific markers for determining secretor status in lactating mothers. J Proteome Res 2012;11:6124-33. https://doi.org/10.1021/pr300769g
  18. Bering SB. Human milk oligosaccharides to prevent gut dysfunction and necrotizing enterocolitis in preterm neonates. Nutrients 2018;10:1461. https://doi.org/10.3390/nu10101461
  19. Meyer KM, Mohammad M, Bode L, Chu DM, Ma J, Haymond M, et al. 20: Maternal diet structures the breast milk microbiome in association with human milk oligosaccharides and gut-associated bacteria. Am J Obstet Gynecol 2017;216(1 Suppl):S15.
  20. Bode L. Human milk oligosaccharides: prebiotics and beyond. Nutr Rev 2009;67 Suppl 2:S183-91. https://doi.org/10.1111/j.1753-4887.2009.00239.x
  21. Garrido D, Dallas DC, Mills DA. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: mechanisms and implications. Microbiology (Reading) 2013;159(Pt 4):649-64. https://doi.org/10.1099/mic.0.064113-0
  22. Le Doare K, Holder B, Bassett A, Pannaraj PS. Mother's milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 2018;9:361. https://doi.org/10.3389/fimmu.2018.00361
  23. Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The human microbiome and child growth - first 1000 days and beyond. Trends Microbiol 2019;27:131-47. https://doi.org/10.1016/j.tim.2018.09.008
  24. Wang M, Li M, Wu S, Lebrilla CB, Chapkin RS, Ivanov I, et al. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. J Pediatr Gastroenterol Nutr 2015;60:825-33. https://doi.org/10.1097/MPG.0000000000000752
  25. Sanidad KZ, Zeng MY. Neonatal gut microbiome and immunity. Curr Opin Microbiol 2020;56:30-7. https://doi.org/10.1016/j.mib.2020.05.011
  26. Schmidt WP, Genser B, Luby SP, Chalabi Z. Estimating the effect of recurrent infectious diseases on nutritional status: sampling frequency, sample-size, and bias. J Health Popul Nutr 2011;29:317-26.
  27. Austin S, De Castro CA, Benet T, Hou Y, Sun H, Thakkar SK, et al. Temporal change of the content of 10 oligosaccharides in the milk of Chinese urban mothers. Nutrients 2016;8:346. https://doi.org/10.3390/nu8060346
  28. Kuntz S, Rudloff S, Kunz C. Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells. Br J Nutr 2008;99:462-71. https://doi.org/10.1017/S0007114507824068
  29. Davis EC, Wang M, Donovan SM. The role of early life nutrition in the establishment of gastrointestinal microbial composition and function. Gut Microbes 2017;8:143-71. https://doi.org/10.1080/19490976.2016.1278104
  30. Doherty AM, Lodge CJ, Dharmage SC, Dai X, Bode L, Lowe AJ. Human milk oligosaccharides and associations with immune-mediated disease and infection in childhood: a systematic review. Front Pediatr 2018;6:91. https://doi.org/10.3389/fped.2018.00091
  31. Zevgiti S, Zabala JG, Darji A, Dietrich U, Panou-Pomonis E, Sakarellos-Daitsiotis M. Sialic acid and sialyllactose glyco-conjugates: design, synthesis and binding assays to lectins and swine influenza H1N1 virus. J Pept Sci 2012;18:52-8. https://doi.org/10.1002/psc.1415
  32. Duska-McEwen G, Senft AP, Ruetschilling TL, Barrett EG, Buck RH. Human milk oligosaccharides enhance innate immunity to respiratory syncytial virus and influenza in vitro. Food Nutr Sci 2014;5:1387-98. https://doi.org/10.4236/fns.2014.514151
  33. Stepans MB, Wilhelm SL, Hertzog M, Rodehorst TK, Blaney S, Clemens B, et al. Early consumption of human milk oligosaccharides is inversely related to subsequent risk of respiratory and enteric disease in infants. Breastfeed Med 2006;1:207-15. https://doi.org/10.1089/bfm.2006.1.207
  34. Heacock HJ, Jeffery HE, Baker JL, Page M. Influence of breast versus formula milk on physiological gastroesophageal reflux in healthy, newborn infants. J Pediatr Gastroenterol Nutr 1992;14:41-6. https://doi.org/10.1097/00005176-199201000-00009
  35. Eiwegger T, Stahl B, Haidl P, Schmitt J, Boehm G, Dehlink E, et al. Prebiotic oligosaccharides: in vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties. Pediatr Allergy Immunol 2010;21:1179-88. https://doi.org/10.1111/j.1399-3038.2010.01062.x
  36. Prendergast AJ, Kelly P. Interactions between intestinal pathogens, enteropathy and malnutrition in developing countries. Curr Opin Infect Dis 2016;29:229-36. https://doi.org/10.1097/QCO.0000000000000261
  37. Zenhom M, Hyder A, de Vrese M, Heller KJ, Roeder T, Schrezenmeir J. Prebiotic oligosaccharides reduce proinflammatory cytokines in intestinal Caco-2 cells via activation of PPARγ and peptidoglycan recognition protein 3. J Nutr 2011;141:971-7. https://doi.org/10.3945/jn.110.136176
  38. He Y, Liu S, Kling DE, Leone S, Lawlor NT, Huang Y, et al. The human milk oligosaccharide 2'-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut 2016;65:33-46. https://doi.org/10.1136/gutjnl-2014-307544
  39. Goehring KC, Marriage BJ, Oliver JS, Wilder JA, Barrett EG, Buck RH. Similar to those who are breastfed, infants fed a formula containing 2'-fucosyllactose have lower inflammatory cytokines in a randomized controlled trial. J Nutr 2016;146:2559-66. https://doi.org/10.3945/jn.116.236919
  40. Atochina O, Da'dara AA, Walker M, Harn DA. The immunomodulatory glycan LNFPIII initiates alternative activation of murine macrophages in vivo. Immunology 2008;125:111-21. https://doi.org/10.1111/j.1365-2567.2008.02826.x
  41. Atochina O, Harn D. LNFPIII/LeX-stimulated macrophages activate natural killer cells via CD40-CD40L interaction. Clin Diagn Lab Immunol 2005;12:1041-9. https://doi.org/10.1128/CDLI.12.9.1041-1049.2005
  42. Sprenger N, Odenwald H, Kukkonen AK, Kuitunen M, Savilahti E, Kunz C. FUT2-dependent breast milk oligosaccharides and allergy at 2 and 5 years of age in infants with high hereditary allergy risk. Eur J Nutr 2017;56:1293-301. https://doi.org/10.1007/s00394-016-1180-6
  43. Hegar B, Wibowo Y, Basrowi RW, Ranuh RG, Sudarmo SM, Munasir Z, et al. The role of two human milk oligosaccharides, 2'-fucosyllactose and lacto-N-neotetraose, in infant nutrition. Pediatr Gastroenterol Hepatol Nutr 2019;22:330-40. https://doi.org/10.5223/pghn.2019.22.4.330
  44. Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L, Peila C, et al. Preterm milk oligosaccharides during the first month of lactation. Pediatrics 2011;128:e1520-31. https://doi.org/10.1542/peds.2011-1206
  45. Newburg DS, Ruiz-Palacios GM, Altaye M, Chaturvedi P, Meinzen-Derr J, Guerrero Mde L, et al. Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants. Glycobiology 2004;14:253-63. https://doi.org/10.1093/glycob/cwh020
  46. Underwood MA, German JB, Lebrilla CB, Mills DA. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res 2015;77:229-35. https://doi.org/10.1038/pr.2014.156
  47. Davis JC, Lewis ZT, Krishnan S, Bernstein RM, Moore SE, Prentice AM, et al. Growth and morbidity of Gambian infants are influenced by maternal milk oligosaccharides and infant gut microbiota. Sci Rep 2017;7:40466. https://doi.org/10.1038/srep40466
  48. Larsson MW, Lind MV, Laursen RP, Yonemitsu C, Larnkjaer A, Molgaard C, et al. Human milk oligosaccharide composition is associated with excessive weight gain during exclusive breastfeeding-an explorative study. Front Pediatr 2019;7:297. https://doi.org/10.3389/fped.2019.00297
  49. Charbonneau MR, O'Donnell D, Blanton LV, Totten SM, Davis JC, Barratt MJ, et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 2016;164:859-71. https://doi.org/10.1016/j.cell.2016.01.024
  50. Alderete TL, Autran C, Brekke BE, Knight R, Bode L, Goran MI, et al. Associations between human milk oligosaccharides and infant body composition in the first 6 mo of life. Am J Clin Nutr 2015;102:1381-8. https://doi.org/10.3945/ajcn.115.115451