DOI QR코드

DOI QR Code

Biogeography-Based Optimization of RC structures including static soil-structure interaction

  • Negrin, Ivan A. (Department of Civil Engineering, Faculty of Construction, Marta Abreu Central University) ;
  • Roose, Dirk (Department of Computer Science, KU Leuven) ;
  • Chagoyen, Ernesto L. (Department of Civil Engineering, Faculty of Construction, Marta Abreu Central University) ;
  • Lombaert, Geert (Department of Civil Engineering, KU Leuven)
  • 투고 : 2020.07.14
  • 심사 : 2021.08.18
  • 발행 : 2021.11.10

초록

A method to minimize the economic cost of the structural design of spatial reinforced concrete (RC) frame structures is presented. SAP2000 is used as computational engine, taking into account modelling aspects such as static soil-structure interaction (SSSI). The optimization problem is formulated to properly reflect an actual design problem, limiting e.g., the size of reinforcement bars to commercially available sections. The resulting discrete optimization problem is solved by using Biogeography-Based Optimization (BBO), an evolutionary algorithm selected for its convergence properties. Strategies to reduce the computational cost of the optimization procedure are proposed and an extensive tuning of the parameters of the BBO algorithm is performed, using a novel utility metric, evaluated for models of six simple RC frame structures. The parameters to deal with more complex structures are selected based on the use of utility landscapes. The resulting tuned optimization algorithm allows to reduce the direct cost of the construction of a particular structure project with 21% (15% when SSSI is not taken into account), compared to a design based on traditional criteria. The effect of considering SSSI on the cost of the superstructure is also evaluated, showing that this is an aspect that should not be neglected during modeling.

키워드

과제정보

We acknowledge the financial support of VLIR-UOS via the projects "Computational Techniques for Engineering Applications" (ZEIN2012Z106) and "Vibration Assessment of Civil Engineering Structures" (ZEIN2016PR419), allowing the first author to follow postgraduate courses, to perform a study visit at KU Leuven and to use the HPC infrastructure of the VSC (Flemish Supercomputer Centre).

참고문헌

  1. Afshari, H., Hare, W. and Tesfamariam, S. (2019), "Constrained multi-objective optimization algorithms: Review and comparison with application in reinforced concrete structures", Appl. Soft Comput. J., 83, 105631. https://doi.org/10.1016/j.asoc.2019.105631.
  2. Aydogdu, I. (2017), "Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights", Eng. Optim., 49(3), 381-400. https://doi.org/10.1080/0305215X.2016.1191837.
  3. Bartz-Beielstein, T. (2005), "New experimentalism applied to evolutionary computation", PhD Thesis, Universitat Dortmund, Dortmund.
  4. Chagoyen, E.L., Negrin, I., Negrin, A. and Napoles, J. (2018) "Modelo de base deformable no lineal para interaccion suelo estructura en el diseno optimo de conjuntos estructurales", 19 Convencion de Ingenieria y Arquitectura CUJAE, IV Congreso Internacional de Ingenieria Civil, Palacio de Las Convenciones, La Habana, November.
  5. Chagoyen, M.E.L. and Broche, L.J.L. (2002), "Diseno estructural de cimentaciones. propuesta de norma no publicada", Capitulo 25 en NC 53-039, Comite de Normas para el Calculo de Estructuras de Hormigon, CONCEH, Ministerio de la Construccion, La Habana, Cuba.
  6. Chiarandini, M., Paquete, L., Preuss, M. and Ridge, E. (2007), "Experiments on metaheuristics: methodological overview and open issues", Technical Report DMF-2007-03-003, The Danish Mathematical Society.
  7. Dillen, W., Lombaert, G., Voeten, N. and Schevenels, M. (2018), "Performance assessment of metaheuristic algorithms for structural optimization taking into account the influence of control parameters", 6th International Conference on Engineering Optimization, Lisbon.
  8. Eiben, A. and Jelasity, M. (2002), "A critical note on experimental research methodology in EC", Congress on Evolutionary Computation, CEC'2002, IEEE Press, Piscataway.
  9. Eiben, A. and Smit, S. (2011), "Parameter tuning for configuring and analyzing evolutionary algorithms", Swarm Evol. Comput., 1(1), 19-31. https://doi.org/10.1016/j.swevo.2011.02.001.
  10. Guerra, A. and Kiousis, P.D. (2006), "Design optimization of reinforced concrete structures", Comput. Concrete, 3(5), 313-334. https://doi.org/10.12989/cac.2006.3.5.313.
  11. Hansen, J.B. (1970), "A revised and extended formula for bearing capacity", Danish Geotechnical Institute, Copenhagen.
  12. Huang, C., Li, Y. and Yao, X. (2019), "A survey of automatic parameter tuning methods for metaheuristics", IEEE Tran. Evol. Comput., 24(2), 201-216. https://doi.org/10.1109/TEVC.2019.2921598.
  13. Kalami Heris, S.M. (2019), "Yarpiz evolutionary algorithms toolbox (YPEA)", Available at: https://www.github.com/smkalami/ypea.
  14. Khatibinia, M., Salajegheh, E., Salajegheh, J. and Fadaee, M.J. (2013), "Reliability-based design optimization of reinforced concrete structures including soil-structure interaction using a discrete gravitational search algorithm and a proposed metamodel", Eng. Optim., 45(10), 1147-1165. https://doi.org/10.1080/0305215X.2012.725051.
  15. Klepikov, S.N. (1969), "Solucion general para vigas y placas sobre bases que se deforman elasticamente con rigidez variable", Investigaciones Sobre Bases, Cimentaciones y Mecanica de Suelos, Budivielnik, Kiev.
  16. Klepikov, S.N., Tregub, A.S. and Matveev, I.V. (1987), "Calculo de Edificios y Obras sobre suelos colapsables", Budivielnik, Kiev.
  17. Kripka, M., Boito, D., Triches, J. and Fleith, G. (2015), "Optimization of reinforced concrete frames by harmony search method", 11th World Congress on Structural and Multidisciplinary Optimisation, Australia.
  18. Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M. and Kalashnikov, V.V. (2020), "Optimal design of reinforced concrete beams for rectangular sections with straight haunches", Revista de la Construccion, 19(1), 90-102. https://doi.org/10.7764/rdlc.19.1.90-102.
  19. Malasri, S., Halijan, D.A. and Keough, M.L. (1994), "Concrete beam design optimization with genetic algorithms", J. Arkansas Acad. Sci., 48, 111-115.
  20. Medeiros, G.F. and Kripka, M. (2016), "Modified harmony search and its application to cost minimization of RC columns", Adv. Comput. Des., 2(1), 1-13. https://doi.org/10.12989/acd.2017.2.1.001.
  21. Negrin, A. (2009), "Fundamentos del diseno optimo de estructuras. Primera parte", Available at: http://www.arqhys.com/noticias/2009/09/fundamentos-deldiseno-optimo-de.html
  22. Negrin, D.I., Chagoyen, E. and Negrin, A. (2021), "Parameter tuning in the process of optimization of reinforced concrete structures", DYNA, 88(216), 87-95. https://doi.org/10.15446/dyna.v88n216.87169.
  23. Negrin, D.I., Negrin, M.A. and Chagoyen, E. (2019a), "Optimizacion metaheuristica de conjuntos estructurales de hormigon armado", Revista Ingenieria de Construccion, 34(2), 181-192. http://dx.doi.org/10.4067/S0718-50732019000200181.
  24. Negrin, D.I., Negrin, M.A. and Chagoyen, E. (2019b), "Optimizacion de porticos planos de hormigon armado utilizando una hibridacion de algoritmos geneticos y el algoritmo Nelder-Mead", Obras y Proyectos, 26, 74-86. http://dx.doi.org/10.4067/S0718-28132019000200074.
  25. ONN (NC) (2014), "Norma para el diseno geotecnico de cimentaciones superficiales", Oficina Nacional de Normalizacion (NC), La Habana, Cuba.
  26. ONN (NC) (2019a), "General requirements for the design and construction of concrete structures-Part 1: Conceptual basis and principles of application-Chapters from 1 to 12", Oficina Nacional de Normalizacion (NC), La Habana, Cuba.
  27. ONN (NC) (2019b), "General requirements for the design and construction of concrete structures-Part 2: Design basisChapters from 13 to 20", Oficina Nacional de Normalizacion (NC), La Habana, Cuba.
  28. ONN (NC) (2019c), "General requirements for the design and construction of concrete structures-Part 3: Structural elementsChapters from 21 to 28", Oficina Nacional de Normalizacion (NC), La Habana, Cuba.
  29. Papadrakakis, M., Lagaros, N.D. and Tsompanakis, Y. (1998), "Structural optimization using evolution strategies and neural networks", Comput. Meth. Appl. Mech. Eng., 156(1-4), 309-333. https://doi.org/10.1016/S0045-7825(97)00215-6.
  30. PRECONS (2008), "Precios para la construccion", PRECONS II. Editorial Obras, La Habana, Cuba.
  31. Rizzo, S., Spallino, R. and Giambanco, G. (2000), "Shakedown optimal design of reinforced concrete structures by evolution strategies", Eng. Comput., 17(4), 440-458. https://doi.org/10.1108/02644400010334847.
  32. Serpik, I., Mironenko, I. and Averchenkov, V. (2016), "Algorithm for evolutionary optimization of reinforced concrete frames subject to nonlinear material deformation", International Conference on Industrial Engineering, ICIE 2016, Procedia Eng., 150, 1311-1316. https://doi.org/10.1016/j.proeng.2016.07.304.
  33. Shallan, O., Maaly, H.M., Sagiroglu, M. and Hamdy, O. (2019), "Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms", Struct. Eng. Mech., 70(2), 221-231. https://doi.org/10.12989/sem.2019.70.2.221.
  34. Shallan, O., Maaly, H.M. and Hamdy, O. (2020), "Design optimization of semi-rigid plane steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms", Brilliant Eng., 2, 10-20. https://doi.org/10.36937/ben.2020.002.003.
  35. Simon, D. (2008), "Biogeography-Based Optimization", IEEE Tran. Evol. Comput., 12(6), 702-713. https://doi.org/10.1109. https://doi.org/10.1109
  36. Smit, S. and Eiben, A. (2010a), "Parameter tuning of evolutionary algorithms: Generalist vs. Specialist", Applications of Evolutionary Computation, EvoApplications 2010, Lecture Notes in Computer Science, 6024, 542-551. https://doi.org/10.1007/978-3-642-12239-2_56.
  37. Smit, S. and Eiben, A. (2010b), "Beating the 'world champion' evolutionary algorithm", IEEE Congress on Evolutionary Computation, IEEE Computational Intelligence Society, IEEE Press, Barcelona, Spain.
  38. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A. and Tiwari, S (2005), "Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization", Technical Report, Nanyang Technological University, Singapore and KanGAL Report Number 2005005 (Kanpur Genetic Algorithms Laboratory, IIT Kanpur).
  39. Timchenko, R., Sedin, V. and Krishko, D. (2015), "Calculation of foundations-covers for constructions of tower type on the impact of uneven subsidence of base", Academia Superior Estatal de la Construccion y la Arquitectura de Prydniprov, 10, 29-35
  40. Triches, J., Yepes, V. and Kripka, M. (2019), "Optimization of reinforced concrete building frames with automated grouping of columns", Auto. Constr., 104, 331-340. https://doi.org/10.1016/j.autcon.2019.04.024.
  41. Yeo, D. and Gabbai, R. (2011), "Sustainable design of reinforced concrete structures through embodied energy optimization", Energy Build., 43(8), 2028-2033. https://doi.org/10.1016/j.enbuild.2011.04.014
  42. Yeo, D. and Potra, F.A. (2015), "Sustainable design of reinforced concrete structures through CO2 emission optimization", J. Struct. Eng., 141(3), B4014002. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000888.
  43. Zhang, Y.O. (2008), "Two-dimensional nonlinear earthquake response analysis of a bridge-foundation-ground system", Earthq. Spectra, 24, 343-386. https://doi.org/10.1193/1.2923925.