참고문헌
- Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
- Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
- Akbas, S.D. (2019b), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng Mech., 72(4), 433-441. http://doi.org/10.12989/sem.2019.72.4.433.
- Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.
- Akbas, S.D. (2015a), "Post-buckling analysis of axially functionally graded three-dimensional beams", Int. J. Appl. Mech., 7(3), 1550047. https://doi.org/10.1142/S1758825115500477.
- Akbas, S.D. (2015b), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
- Akbas, S.D. (2015c), "Large deflection analysis of edge cracked simple supported beams", Struct. Eng Mech., 54(3), 433-451. http://doi.org/10.12989/sem.2015.54.3.433.
- Akbas, S.D. (2016), "Post-buckling analysis of edge cracked columns under axial compression loads", Int. J. Appl. Mech., 8(8), 1650086. https://doi.org/10.1142/S1758825116500861.
- Akbas, S.D. (2017), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579.
- Akbas, S.D. (2018a), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng Mech., 67(4), 337-346. http://doi.org/10.12989/sem.2018.67.4.337.
- Akbas, S.D. (2018b), "Nonlinear thermal displacements of laminated composite beams", Coupl. Syst. Mech., 7(6), 691-705. http://doi.org/10.12989/csm.2018.7.6.691.
- Akbas, S.D. (2018c), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. http://doi.org/10.12989/was.2018.27.1.059.
- Akbas, S.D. (2018d), "Large deflection analysis of a fiber reinforced composite beam", Steel Compos. Struct., 27(5), 567-576. https://doi.org/10.12989/scs.2018.27.5.567.
- Akbas, S.D. (2019a), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(1), 1950009. https://doi.org/10.1142/S1758825119500091.
- Akbas, S.D. (2019c), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech., 5(2), 477-485. https://doi.org/10.22055/JACM.2018.26819.1360.
- Akbas, S.D. (2019d), "Post-buckling analysis of a fiber reinforced composite beam with crack", Eng. Fract. Mech., 212, 70-80. https://doi.org/10.1016/j.engfracmech.2019.03.007.
- Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng Mech., 44(1), 109-125. https://doi.org/10.12989/sem.2012.44.1.109.
- Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm. Stress., 36(12), 1233-1254. https://doi.org/10.1080/01495739.2013.788397.
- Al-Furjan, M.S.H., Habibi, M., Ni, J., won Jung, D. and Tounsi, A. (2020a), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01200-x.
- Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020b), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01088-7.
- Alimoradzadeh, M., Salehi, M. and Mohammadi Esfarjani, S. (2020), "Nonlinear vibration analysis of Axially Functionally Graded microbeams based on nonlinear elastic foundation using modified couple stress theory", Periodica Polytechnica, Mech. Eng., 64(2), 97-108. https://doi.org/10.3311/PPme.11684.
- Anandrao, K.S., Gupta, R.K., Ramchandran, P. and Rao, V. (2010), "Thermal post-buckling analysis of uniform slender functionally graded material beams", Struct. Eng Mech., 36(5), 545-560. https://doi.org/10.12989/sem.2010.36.5.545.
- Belbachir, N., Bourada, M., Draiche, K., Tounsi, A., Bourada, F., Bousahla, A.A. and Mahmoud, S.R. (2020), "Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct. Syst., 25(4), 409-422. https://doi.org/10.12989/sss.2020.25.4.409.
- Bellal, M., Hebali, H., Heireche, H., Bousahla, A. A., Tounsi, A., Bourada, F. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
- Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concrete, 26(3), 213-226. http://dx.doi.org/10.12989/cac.2020.26.3.213.
- Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.
- Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
- Chakraborty, S., Dey, T. and Kumar, R. (2019), "Stability and vibration analysis of CNT-Reinforced functionally graded laminated composite cylindrical shell panels using semi-analytical approach", Compos. Part B: Eng., 168, 1-14. https://doi.org/10.1016/j.compositesb.2018.12.051.
- Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
- Civalek, O ., Uzun, B., Yayli, M. O . and Akgoz, B. (2020), "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135(4), 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.
- Cui, D. and Hu, H. (2014), "Thermal buckling and natural vibration of the beam with an axial stick-slip-stop boundary", J. Sound Vib., 333(8), 2271-2282. https://doi.org/10.1016/j.jsv.2013.11.042.
- Ebrahimi, F., Shaghaghi, G.R. and Boreiry, M. (2016), "An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes", Struct. Eng. Mech., 57(1), 179-200. http://doi.org/10.12989/sem.2016.57.1.179.
- Fernandes, R., Mousavi, S.M. and El-Borgi, S. (2016), "Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory", Acta Mechanica, 227(9), 2657-2670. https://doi.org/10.1007/s00707-016-1646-x.
- Fu, Y., Wang, J. and Mao, Y. (2012), "Nonlinear analysis of buckling. free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment", Appl. Math. Model., 36(9), 4324-4340. https://doi.org/10.1016/j.apm.2011.11.059.
- Ganapathi, M., Patel, B.P., Saravanan, J. and Touratier, M. (1998), "Application of spline element for large-amplitude free vibrations of laminated orthotropic straight/curved beams", Compos. Part B: Eng., 29(1), 1-8. https://doi.org/10.1016/S1359-8368(97)00025-5.
- Ghayesh, M.H., Kafiabad, H.A. and Reid, T. (2012), "Sub- and super-critical nonlinear dynamics of a harmonically excited axially moving beam", Int. J. Solid. Struct., 49(1), 227-243. https://doi.org/10.1016/j.ijsolstr.2011.10.007.
- Guellil, M.., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. http://doi.org/10.12989/scs.2021.38.1.001.
- Gunda, J.B. and Rao, G.V. (2013), "Post-buckling analysis of composite beams: A simple intuitive formulation", Sadhana, 38(3), 447-459. https://doi.org/10.1007/s12046-013-0144-2.
- He, J.H. (2007), "Variational approach for nonlinear oscillators", Chaos Soliton Fract., 34(5), 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026.
- Hellal, H., Bourada, M., Hebali, H., Bourada, F., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory", J. Sandw. Struct. Mater., 1099636219845841. https://doi.org/10.1177/1099636219845841.
- Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018)., "Structural response of porous FG nanobeams under hygrothermo-mechanical loadings", Compos. Part B: Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023.
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
- Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng Mech., 64(4), 391-402. http://doi.org/10.12989/sem.2017.64.4.391.
- Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng Mech., 40(3), 347-371. http://doi.org/10.12989/sem.2011.40.3.347.
- Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading", Struct. Eng Mech., 41(6), 775-789. http://doi.org/10.12989/sem.2012.41.6.775.
- Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties", Steel Compos. Struct., 15(5), 481-505. https://doi.org/10.12989/scs.2013.15.5.481.
- Kumar, R., Banerjee, B. and Ramachandra, L.S. (2016), "Nonlinear stability and dynamics of composite skew plates under nonuniform loadings using differential quadrature method", Mech. Res. Commun., 73, 76-90. https://doi.org/10.1016/j.mechrescom.2016.02.011.
- Kumar, R., Ramachandra, L.S. and Banerjee, B. (2017), "Semi-analytical approach for thermal buckling and postbuckling response of rectangular composite plates subjected to localized thermal heating", Acta Mechanica, 228(5), 1767-1791. https://doi.org/10.1007/s00707-016-1797-9.
- Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
- Mohammadi, H. and Mahzoon, M. (2013), "Thermal effects on postbuckling of nonlinear microbeams based on the modified strain gradient theory", Compos. Struct., 106, 764-776. https://doi.org/1016/j.compstruct.2013.06.030. https://doi.org/10.16/j.compstruct.2013.06.030
- Mororo, L.A.T., Melo, A.M.C.D. and Parente Junior, E. (2015), "Geometrically nonlinear analysis of thin-walled laminated composite beams", Lat. Am. J. Solid. Struct., 12(11), 2094-2117. http://doi.org/10.1590/1679-78251782.
- Nayfeh, A.H. and Pai, P.F. (2004), Linear and Nonlinear Structural Mechanics, John Wiley and Sons.
- Pagani, A. and Carrera, E. (2017), "Large-deflection and postbuckling analyses of laminated composite beams by Carrera Unified Formulation", Compos. Struct., 170, 40-52. https://doi.org/10.1016/j.compstruct.2017.03.008.
- Patel, S.N. (2014), "Nonlinear bending analysis of laminated composite stiffened plates", Steel Compos. Struct., 17(6), 867-890. http://doi.org/10.12989/scs.2014.17.6.867.
- Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.
- Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
- Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A. and Al-Zahrani, M.M. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", Steel Compos. Struct., 37(6), 695-709. https://doi.org/10.12989/scs.2020.37.6.695.
- Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation", Thin Wall. Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.
- Shi-rong L, Chang-jun C, You-he Z (2003), "Thermal postbuckling of an elastic beams subjected to a transversely nonuniform temperature rising", Appl Math Mech-Engl., 24(5):514-520. https://doi.org/10.1007/BF02435863.
- Simsek, M. (2014), "Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He's variational method", Compos. Struct., 112, 264-272. https://doi.org/10.1016/j.compstruct.2014.02.010.
- Singh, V., Kumar, R. and Patel, S.N. (2021a), "Non-linear vibration and instability of multi-phase composite plate subjected to non-uniform in-plane parametric excitation: Semi-analytical investigation", Thin Wall. Struct., 162, 107556. https://doi.org/10.1016/j.tws.2021.107556.
- Singh, V., Kumar, R., Patel, S.N., Dey, T. and Kumar Panda, S. (2021b), "Instability and vibration analyses of functionally graded carbon nanotube-reinforced laminated composite plate subjected to localized in-plane periodic loading", J. Aerosp. Eng., 34(6), 04021072. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001302.
- Solano, R. and Vaz, M. (2018), "Thermal post-buckling of slender elastic rods with different boundary conditions", Revista de Engenharia Termica, 5(2), 50-57. https://doi.org/10.5380/reterm.v5i2.61842.
- Stoykov, S. and Margenov, S. (2014), "Nonlinear vibrations of 3D laminated composite beams", Math. Prob. Eng., 2014, Article ID 892782. https://doi.org/10.1155/2014/892782.
- Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermomechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
- Yadav, A., Amabili, M., Panda, S.K., Dey, T. and Kumar, R. (2021), "Nonlinear damped vibrations of three-phase CNT-FRC circular cylindrical shell", Compos. Struct., 255, 112939. https://doi.org/10.1016/j.compstruct.2020.112939.