Acknowledgement
This work was financially supported by the Natural Science Foundation of Hainan Province [2019RC074] and the National Natural Science Foundation of China [31860480].
References
- Zhang R, He H, Di Y, et al. Chemical constituents from Aphanamixis grandifolia. Fitoterapia. 2014; 92:100-104. https://doi.org/10.1016/j.fitote.2013.10.014
- Zhang Y, Wang J, Gu Y, et al. Diverse prieurianin-type limonoid derivatives from the fruits of Aphanamixis grandifolia and their absolute configuration determination. Tetrahedron. 2014;70(37): 6594-6606. https://doi.org/10.1016/j.tet.2014.07.006
- Astulla A, Hirasawa Y, Rahman A, et al. Melidianolic acid a and B, new antimalarial acyclic diterpenes from Aphanamixis grandifolia. Nat Prod Commun. 2011;6:323-326.
- Yang SP, Chen HD, Liao SG, et al. Aphanamolide A, a new limonoid from Aphanamixis polystachya. Org Lett. 2011;13(1):150-153. https://doi.org/10.1021/ol102745h
- Zeng Q, Guan B, Ren J, et al. Aphanamgrandiol A, a new triterpenoid with a unique carbon skeleton from Aphanamixis grandifolia. Fitoterapia. 2013;86:217-221. https://doi.org/10.1016/j.fitote.2013.02.011
- Clay K, Schardl C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat. 2002;160(Suppl S4):S99-S127. https://doi.org/10.1086/342161
- Guo ZY, Tan MH, Liu CX, et al. Aspergoterpenins a(-)D: four new antimicrobial bisabolane sesquiterpenoid derivatives from an endophytic fungus Aspergillus versicolor. Molecules. 2018;23:1291. https://doi.org/10.3390/molecules23061291
- Deng M, Liu Y, Huang Y, et al. New bioactive secondary metabolites from the Anoectochilus roxburghii endophytic fungus Aspergillus versicolor. Fitoterapia. 2020;143:104532. https://doi.org/10.1016/j.fitote.2020.104532
- Cui H, Liu Y, Li T, et al. 3-Arylisoindolinone and sesquiterpene derivatives from the mangrove endophytic fungi Aspergillus versicolor SYSU-SKS025. Fitoterapia. 2018;124:177-181. https://doi.org/10.1016/j.fitote.2017.11.006
- Miao FP, Li XD, Liu XH, et al. Secondary metabolites from an algicolous Aspergillus versicolor strain. Mar Drugs. 2012;10(1):131-139. https://doi.org/10.3390/md10010131
- El-Gendy M, Yahya S, Hamed AR, et al. Phylogenetic analysis and biological evaluation of marine endophytic fungi derived from Red Sea sponge Hyrtios erectus. Appl Biochem Biotechnol. 2018;185(3):755-777. https://doi.org/10.1007/s12010-017-2679-x
- Williamson SM, Guzman M, Marin DH, et al. Evaluation of Pseudomonas syringae strain ESC-11 for biocontrol of crown rot and anthracnose of banana. Biol Control. 2008;46(3):279-286. https://doi.org/10.1016/j.biocontrol.2008.05.016
- Samson RA, Visagie CM, Houbraken J, et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol. 2014;78:141-173. https://doi.org/10.1016/j.simyco.2014.07.004
- Talbot NJ, Salch YP, Ma M, et al. Karyotypic variation within clonal lineages of the rice blast fungus, Magnaporthe grisea. Appl Environ Microbiol. 1993;59(2):585-593. https://doi.org/10.1128/aem.59.2.585-593.1993
- White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. (Innis MA, Gelfand DH, Shinsky TJ, White TJ, eds). Academic Press Inc, 1990. New York:315-322.
- Hong SB, Go SJ, Shin HD, et al. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia. 2005;97(6):1316-1329. https://doi.org/10.1080/15572536.2006.11832738
- Jurjevic Z, Peterson SW, Horn BW. Aspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny. IMA Fungus. 2012;3(1):59-79. https://doi.org/10.5598/imafungus.2012.03.01.07
- Sakai K, Ohte S, Ohshiro T, et al. Selective inhibition of acyl-CoA:cholesterol acyltransferase 2 isozyme by flavasperone and sterigmatocystin from Aspergillus species. J Antibiot. 2008;61(9):568-572. https://doi.org/10.1038/ja.2008.76
- Krzyczkowski W, Malinowska E, Suchocki P, et al. Isolation and quantitative determination of ergosterol peroxide in various edible mushroom species. Food Chem. 2009;113(1):351-355. https://doi.org/10.1016/j.foodchem.2008.06.075
- Hamasaki T, Hatsuda Y, Terasaima N, et al. Studies on the metabolites of Aspergillus versicolor (vuillemin) tiraboschi. Part V. Isolation and structures of three new metabolites, versicolorins A, B and C. Agric Biol Chem. 1967;31:11-17. https://doi.org/10.1271/bbb1961.31.11
- Birkinshaw JH, Roberts JC, Roffey P. Studies in mycological chemistry. Part XIX. "product B" (averantin) [1,3,6,8-tetrahydroxy-2-(1-hydroxyhexyl)anthraquinone], a pigment from Aspergillus versicolor (vuillemin) tiraboschi. J Chem Soc Perkin Trans. 1966;9:855-857.
- Lee YM, Li H, Hong J, et al. Bioactive metabolites from the sponge-derived fungus Aspergillus versicolor. Arch Pharm Res. 2010;33(2):231-235. https://doi.org/10.1007/s12272-010-0207-4
- Zhang H, Yuan C, Cao M, et al. New acyclic diterpenoids from the fruits of Aphanamixis grandifolia and structure revision of nemoralisin B. Phytochem Lett. 2014;8:81-85. https://doi.org/10.1016/j.phytol.2014.02.005
- Ye Y, Xia C, Yang J, et al. Isocoumarins from the fermentation products of an endophytic fungus of Aspergillus versicolor. Phytochem Lett. 2014;10: 215-218. https://doi.org/10.1016/j.phytol.2014.09.016
- Nakayama T. Biocontrol of powdery scab of potato by seed tuber application of an antagonistic fungus, Aspergillus versicolor, isolated from potato roots. J Gen Plant Pathol. 2017;83(4):253-263. https://doi.org/10.1007/s10327-017-0716-9
- Liu W, Wang L, Wang B, et al. Diketopiperazine and diphenylether derivatives from marine algae-derived Aspergillus versicolor OUCMDZ-2738 by epigenetic activation. Mar Drugs. 2018;17(1):6. https://doi.org/10.3390/md17010006
- Liu Z, Zhang K, Ke Z, et al. Optimisation of medium and culture conditions for the production of antifungal substances to Colletotrichum musae by Trametes elegans SR06. Biocontrol Sci Techn. 2016;26(11):1538-1551. https://doi.org/10.1080/09583157.2016.1218441
- Wang W, Chen R, Luo Z, et al. Antimicrobial activity and molecular docking studies of a novel anthraquinone from a marine-derived fungus Aspergillus versicolor. Nat Prod Res. 2018;32(5): 558-563. https://doi.org/10.1080/14786419.2017.1329732
- Zhou M, Miao MM, Du G, et al. Aspergillines A-E, highly oxygenated hexacyclic indole-tetrahydrofuran-tetramic acid derivatives from Aspergillus versicolor. Org Lett. 2014;16(19):5016-5019. https://doi.org/10.1021/ol502307u
- Salendra L, Luo X, Lin X, et al. Versispiroketal A, an unusual tetracyclic bridged spiroketal from the sponge-associated fungus Aspergillus versicolor SCSIO 41013. Org Biomol Chem. 2019;17(8): 2182-2186. https://doi.org/10.1039/c9ob00110g
- Li XB, Zhou YH, Zhu RX, et al. Identification and biological evaluation of secondary metabolites from the endolichenic fungus Aspergillus versicolor. Chem Biodivers. 2015;12(4):575-592. https://doi.org/10.1002/cbdv.201400146
- Wang M, Sun M, Hao H, et al. Avertoxins A-D, prenyl asteltoxin derivatives from Aspergillus versicolor Y10, an endophytic fungus of Huperzia serrata. J Nat Prod. 2015;78(12):3067-3070. https://doi.org/10.1021/acs.jnatprod.5b00600
- Hou XM, Zhang YH, Hai Y, et al. Aspersymmetide A, a new centrosymmetric cyclohexapeptide from the marine-derived fungus Aspergillus versicolor. Mar Drugs. 2017;15:363. https://doi.org/10.3390/md15110363
- Ozkaya FC, Ebrahim W, El-Neketi M, et al. Induction of new metabolites from sponge-associated fungus Aspergillus carneus by OSMAC approach. Fitoterapia. 2018;131:9-14. https://doi.org/10.1016/j.fitote.2018.10.008
- Liu K, Zheng Y, Miao C, et al. The antifungal metabolites obtained from the rhizospheric Aspergillus sp. YIM PH30001 against pathogenic fungi of Panax notoginseng. Nat Prod Res. 2014; 28(24):2334-2337. https://doi.org/10.1080/14786419.2014.935941
- Hu J, Li Z, Gao J, et al. New diketopiperazines from a marine-derived fungus strain Aspergillus versicolor MF180151. Mar Drugs. 2019;17:262. https://doi.org/10.3390/md17050262
Cited by
- Metabolites Produced by Fungi against Fungal Phytopathogens: Review, Implementation and Perspectives vol.11, pp.1, 2021, https://doi.org/10.3390/plants11010081