고압수소화물에서의 상온초전도 현상

  • Published : 2021.07.31

Abstract

Keywords

References

  1. A. Drozdov, et al.. "Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system" Nature 525, 73 (2015). https://doi.org/10.1038/nature14964
  2. M. Somayazulu, et al.. "Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures" Physical Review Letters 122, 027001 (2019). https://doi.org/10.1103/PhysRevLett.122.027001
  3. A. P. Drozdov, et al.. "Superconductivity at 250K in lanthanum hydride under high pressures" Nature 569, 528 (2019). https://doi.org/10.1038/s41586-019-1201-8
  4. N. W. Ashcroft. "Metallic Hydrogen: A High-Temperature Superconductor?" Physical Review Letters 21, 1748 (1968). https://doi.org/10.1103/PhysRevLett.21.1748
  5. R. P. Dias and I. F. Silvera. "Observation of the Wigner-Huntington transition to metallic hydrogen" Science 335, 6326 (2017).
  6. S. Yi, C. Wang, H. Jeon, and J,-H. Cho, "Stability and bonding nature of clathrate H cages in a near-room-temperature superconductor LaH10" Physical Review Materials 5, 024801 (2021). https://doi.org/10.1103/PhysRevMaterials.5.024801
  7. L. Liu, C. Wang, S. Yi, K. W. Kim, J. Kim, and J.-H. Cho, "Microscopic mechanism of room-temperature superconductvity in compressed LaH10" Physical Review B 99, 140501(R) (2019). https://doi.org/10.1103/physrevb.99.140501
  8. C. Wang, S. Yi, and J.-H. Cho, "Multiband nature of room-temperature superconductivity in LaH10 at high pressure" Physical Review B 101, 104506 (2020). https://doi.org/10.1103/physrevb.101.104506
  9. A. P. Durajski, R. Szczesniak, Y. Li, C. Wang, and J.-H. Cho, "Isotope effect in superconducting lanthanum hydride under high compression" Physical Review B 101, 214501 (2020). https://doi.org/10.1103/physrevb.101.214501
  10. C. Wang, S. Yi, and J.-H. Cho. "Pressure dependence of the superconducting transition temperature of compressed LaH10" Physical Review B 100, 060502(R) (2019). https://doi.org/10.1103/physrevb.100.140501
  11. X. Li, et al.. "Polyhydride CeH9 with an atomic-like hydrogen clathrate structure" Nature Communications 10, 3461 (2019). https://doi.org/10.1038/s41467-019-11330-6
  12. N. P. Salke, et al.. "Synthesis of clathrate cerium superhydride CeH9 at 80-100 GPa with atomic hydrogen sublattice" Nature Communications 10, 4453 (2019). https://doi.org/10.1038/s41467-019-12326-y
  13. H. Jeon, C. Wang, S. Yi, and J.-H. Cho. "Origin of enhanced chemical precompression in cerium hydride CeH9" Scientific Reports 10, 16878 (2020). https://doi.org/10.1038/s41598-020-73665-1
  14. S. Yao, C. Wang, S. Liu, J. Jeon, and J.-H. Cho, "Formation mechanism of chemically precompressed hydrogen clathrates in metal superhydrides" Inorganic Chemistry (accepted) (2021).
  15. E. Snider, et al.. "Room-temperature superconductivity in a carbonaceous sulfur hydride" Nature 586, 373-377 (2020). https://doi.org/10.1038/s41586-020-2801-z
  16. S. D. Cataldo, C. Heil, W. von der Linden, and L. Boeri. "LaBH8: Towards high-Tc low-pressrue superconductivity in ternary superhydrides" Physical Review B 104, L020511 (2021). https://doi.org/10.1103/PhysRevB.104.L020511