Acknowledgement
This work was supported by Key Scientific and Technological Research Projects in Henan Province [No. 192102310169]; and the Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province [No. 20IRTSTHN030].
References
- Rezk BM, Haenen GR, van der Vijgh WJ, Bast A. 2002. The antioxidant activity of phloretin: the disclosure of a new antioxidant pharmacophore in flavonoids. Biochem. Biophys. Res. Commun. 295: 9-13. https://doi.org/10.1016/S0006-291X(02)00618-6
- Lin SC, Chen MC, Liu S, Callahan VM, Bracci NR, Lehman CW, et al. 2019. Phloretin inhibits Zika virus infection by interfering with cellular glucose utilisation. Int. J. Antimicrob. Agents 54: 80-84. https://doi.org/10.1016/j.ijantimicag.2019.03.017
- Matsuoka K, Kobayashi T, Ueno F, Matsui T, Hirai F, Inoue N, et al. 2018. Evidence-based clinical practice guidelines for inflammatory bowel disease. J. Gastroenterol. 53: 305-353. https://doi.org/10.1007/s00535-018-1439-1
- Ananthakrishnan AN. 2015. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 12: 205-217. https://doi.org/10.1038/nrgastro.2015.34
- Rangan P, Choi I, Wei M, Navarrete G, Guen E, Brandhorst S, et al. 2019. Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology. Cell Rep. 26: 2704-2719.e6. https://doi.org/10.1016/j.celrep.2019.02.019
- Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. 2016. A Dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167: 1339-1353.e21. https://doi.org/10.1016/j.cell.2016.10.043
- Zhang D, Jin W, Wu R, Li J, Park SA, Tu E, et al. 2019. High glucose intake exacerbates autoimmunity through reactive-oxygenspecies-mediated TGF-β cytokine activation. Immunity 51: 671-681.e5. https://doi.org/10.1016/j.immuni.2019.08.001
- Miranda PM, De Palma G, Serkis V, Lu J, Louis-Auguste MP, McCarville JL, et al. 2018. High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome 6: 57. https://doi.org/10.1186/s40168-018-0433-4
- Sender R, Fuchs S, Milo R. 2016. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164: 337-340. https://doi.org/10.1016/j.cell.2016.01.013
- Valdes AM, Walter J, Segal E, Spector TD. 2018. Role of the gut microbiota in nutrition and health. BMJ 361: k2179.
- Rooks MG, Garrett WS. 2016. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16: 341-352. https://doi.org/10.1038/nri.2016.42
- Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. 2013. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145: 396-406.e1-10. https://doi.org/10.1053/j.gastro.2013.04.056
- Agus A, Planchais J, Sokol H. 2018. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23: 716-724. https://doi.org/10.1016/j.chom.2018.05.003
- De Angelis M, Garruti G, Minervini F, Bonfrate L, Portincasa P, Gobbetti M. 2019. The food-gut human axis: the effects of diet on gut microbiota and metabolome. Curr. Med. Chem. 26: 3567-3583. https://doi.org/10.2174/0929867324666170428103848
- Visconti A, Le Roy CI, Rosa F, Rossi N, Martin TC, Mohney RP, et al. 2019. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10: 4505. https://doi.org/10.1038/s41467-019-12476-z
- Dorrestein PC, Mazmanian SK, Knight R. 2014. Finding the missing links among metabolites, microbes, and the host. Immunity 40: 824-832. https://doi.org/10.1016/j.immuni.2014.05.015
- Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027-1031. https://doi.org/10.1038/nature05414
- Liao X, Song L, Zeng B, Liu B, Qiu Y, Qu H, et al. 2019. Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis. EBioMedicine 44: 665-674. https://doi.org/10.1016/j.ebiom.2019.03.057
- Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. 2017. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol. Hepatol. 2: 747-756. https://doi.org/10.1016/S2468-1253(17)30147-4
- Dabke K, Hendrick G, Devkota S. 2019. The gut microbiome and metabolic syndrome. J. Clin. Invest. 129: 4050-4057. https://doi.org/10.1172/jci129194
- Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. 2019. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4: 293-305. https://doi.org/10.1038/s41564-018-0306-4
- Yu M, Jia H, Zhou C, Yang Y, Zhao Y, Yang M, et al. 2017. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. J. Pharm. Biomed. Anal. 138: 231-239. https://doi.org/10.1016/j.jpba.2017.02.008
- Wu M, Li P, An Y, Ren J, Yan D, Cui J, et al. 2019. Phloretin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice by regulating the gut microbiota. Pharmacol. Res. 150: 104489. https://doi.org/10.1016/j.phrs.2019.104489
- Alsanea S, Gao M, Liu D. 2017. Phloretin prevents high-fat diet-induced obesity and improves metabolic homeostasis. AAPS J. 19: 797-805. https://doi.org/10.1208/s12248-017-0053-0
- Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. 1990. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98: 694-702. https://doi.org/10.1016/0016-5085(90)90290-h
- Murthy SN, Cooper HS, Shim H, Shah RS, Ibrahim SA, Sedergran DJ. 1993. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig. Dis. Sci. 38: 1722-1734. https://doi.org/10.1007/BF01303184
- Dennis PG, Guo K, Imelfort M, Jensen P, Tyson GW, Rabaey K. 2013. Spatial uniformity of microbial diversity in a continuous bioelectrochemical system. Bioresour. Technol. 129: 599-605. https://doi.org/10.1016/j.biortech.2012.11.098
- Wang G, Gao Y, Wang H, Wang J, Niu X. 2018. Phloretin reduces cell injury and inflammation mediated by Staphylococcus aureus via targeting sortase B and the molecular mechanism. Appl. Microbiol. Biotechnol. 102: 10665-10674. https://doi.org/10.1007/s00253-018-9376-8
- Park SY, Kim EJ, Shin HK, Kwon DY, Kim MS, Surh YJ, et al. 2007. Induction of apoptosis in HT-29 colon cancer cells by phloretin. J. Med. Food. 10: 581-586. https://doi.org/10.1089/jmf.2007.116
- Fraga CG, Croft KD, Kennedy DO, Tomas-Barberan FA. 2019. The effects of polyphenols and other bioactives on human health. Food Funct. 10: 514-528. https://doi.org/10.1039/C8FO01997E
- Wang Q, Wang K, Wu W, Lv L, Bian X, Yang L, et al. 2020. Administration of Bifidobacterium bifidum CGMCC 15068 modulates gut microbiota and metabolome in azoxymethane (AOM)/dextran sulphate sodium (DSS)-induced colitis-associated colon cancer (CAC) in mice. Appl. Microbiol. Biotechnol. 104: 5915-5928. https://doi.org/10.1007/s00253-020-10621-z
- Del Chierico F, Nobili V, Vernocchi P, Russo A, De Stefanis C, Gnani D, et al. 2017. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 65: 451-464. https://doi.org/10.1002/hep.28572
- Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. 2019. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment. EBioMedicine 47: 529-542. https://doi.org/10.1016/j.ebiom.2019.08.032
- Okumura R, Kurakawa T, Nakano T, Kayama H, Kinoshita M, Motooka D, et al. 2016. Lypd8 promotes the segregation of flagellated microbiota and colonic epithelia. Nature 532: 117-21. https://doi.org/10.1038/nature17406
- Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney ML, et al. 2010. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8: 292-300. https://doi.org/10.1016/j.chom.2010.08.004
- Willemze RA, Welting O, van Hamersveld P, Verseijden C, Nijhuis LE, Hilbers FW, et al. 2019. Loss of intestinal sympathetic innervation elicits an innate immune driven colitis. Mol. Med. 25: 1. doi: 10.1186/s10020-018-0068-8.
- Agac D, Estrada LD, Maples R, Hooper LV, Farrar JD. 2018. The β2-adrenergic receptor controls inflammation by driving rapid IL-10 secretion. Brain Behav. Immun. 74: 176-185. https://doi.org/10.1016/j.bbi.2018.09.004
- Sehgal P, Colombel JF, Aboubakr A, Narula N. 2018. Systematic review: safety of mesalazine in ulcerative colitis. Aliment Pharmacol. Ther. 47: 1597-1609. https://doi.org/10.1111/apt.14688
- Baker DE, Kane S. 2004. The short- and long-term safety of 5-aminosalicylate products in the treatment of ulcerative colitis. Rev. Gastroenterol. Disord. 4: 86-91.
- Podolsky DK. 2002. Inflammatory bowel disease. N. Engl. J. Med. 347: 417-429. https://doi.org/10.1056/NEJMra020831
- Dahl JU, Gray MJ, Bazopoulou D, Beaufay F, Lempart J, Koenigsknecht MJ, et al. 2017. The anti-inflammatory drug mesalamine targets bacterial polyphosphate accumulation. Nat. Microbiol. 2: 16267. https://doi.org/10.1038/nmicrobiol.2016.267
- Lin HM, Barnett MP, Roy NC, Joyce NI, Zhu S, Armstrong K, et al. 2010. Metabolomic analysis identifies inflammatory and noninflammatory metabolic effects of genetic modification in a mouse model of Crohn's disease. J. Proteome Res. 9: 1965-1975. https://doi.org/10.1021/pr901130s
- Hase A, Jung SE, aan het Rot M. 2015. Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacol. Biochem. Behav. 133: 1-6. https://doi.org/10.1016/j.pbb.2015.03.008
- Capuron L, Schroecksnadel S, Feart C, Aubert A, Higueret D, Barberger-Gateau P, et al. 2011. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol. Psychiatry 70: 175-182. https://doi.org/10.1016/j.biopsych.2010.12.006
- Hill CJ, Lynch DB, Murphy K, Ulaszewska M, Jeffery IB, O'Shea CA, et al. 2017. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 5: 4. https://doi.org/10.1186/s40168-016-0213-y