Acknowledgement
This research is partly funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) (Grant No. FWO.104.2017.03) and the Ministry of Science and Technology (NDT.45.GER/18).
References
- Aya Z, Paes G. 2019. Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis. Front. Chem. 7: 874. https://doi.org/10.3389/fchem.2019.00874
- Mapemba LD, Epplin FM, Taliaferro CM, Huhnke RL. 2007. Biorefinery feedstock production on conservation reserve program land. Rev. Agric. Econ. 29: 227-246. https://doi.org/10.1111/j.1467-9353.2007.00340.x
- Vasic K, Knez Z, Leitgeb M. 2021. Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Molecules 26: 753. https://doi.org/10.3390/molecules26030753
- Lilholt H, Lawther JM. 2000. Natural organic fibres, pp. 303-325. In Kelly A, Zweben C (eds.), Comprehensive composite materials, Ed. Elsevier Science.
- Jeya M, Kalyani D, Dhiman SS, Kim H, Woo S, Kim D, et al. 2012. Saccharification of woody biomass using glycoside hydrolases from Stereum hirsutum. Bioresour. Technol. 117: 310-316. https://doi.org/10.1016/j.biortech.2012.03.047
- Ostby H, Hansen LD, Horn SJ, Eijsink VGH, Varnai A. 2020. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J. Ind. Microbiol. Biotechnol. 47: 623-657. https://doi.org/10.1007/s10295-020-02301-8
- Chowdhary P, Shukla G, Raj G, Ferreira LFR, Bharagava RN. 2019. Microbial manganese peroxidase: a ligninolytic enzyme and its ample opportunities in research. SN Appl. Sci. 1: 45. https://doi.org/10.1007/s42452-018-0046-3
- Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI. 2017. Lignin peroxidase functionalities and prospective applications. Microbiologyopen 6: e00394. https://doi.org/10.1002/mbo3.394
- Sipos B, Benko Z, Dienes D, Reczey K, Viikari L, Siika-aho M. 2010. Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Appl. Biochem. Biotechnol. 161: 347-364. https://doi.org/10.1007/s12010-009-8824-4
- Sorensen HR, Pedersen S, Meyer AS. 2007. Synergistic enzyme mechanisms and effects of sequential enzyme additions on degradation of water insoluble wheat arabinoxylan. Enzyme Microb. Technol. 40: 908-918. https://doi.org/10.1016/j.enzmictec.2006.07.026
- Shrivastava S. 2020. Introduction to glycoside hydrolases: classification, identification and occurrence, pp. 3-84, In Shrivastava S (ed.), Industrial applications of Glycoside hydrolases. Ed. Springer Singapore, Singapore.
- Nghi DH, Bittner B, Kellner H, Jehmlich N, Ullrich R, Pecyna MJ, et al. 2012. The wood-rot ascomycete Xylaria polymorpha produces a novel GH78 glycoside hydrolase that exhibits α-L-rhamnosidase and feruloyl esterase activity and releases hydroxycinnamic acids from lignocelluloses. Appl. Environ. Microbiol. 78: 4893-4901. https://doi.org/10.1128/AEM.07588-11
- Faulds CB, Williamson G. 1994. Purification and characterization of a ferulic acid esterase (FAE-111) from Aspergillus niger: specificity for the phenolic moiety and binding to microcrystalline cellulose. Microbiology 140: 779-787. https://doi.org/10.1099/00221287-140-4-779
- Liers C, Ullrich R, Pecyna M, Schlosser D, Hofrichter M. 2007. Production, purification and partial enzymatic and molecular characterization of a laccase from the wood-rotting ascomycete Xylaria polymorpha. Enzym. Microb. Technol. 41: 785-793. https://doi.org/10.1016/j.enzmictec.2007.07.002
- Li H, Zhan H, Fu S, Liu M, Chai XS. 2007. Rapid determination of methanol in black liquors by full evaporation headspace gas chromatography. J. Chromatogr. A. 1175: 133-136. https://doi.org/10.1016/j.chroma.2007.10.040
- Hofrichter M, Lundell T, Hatakka A. 2001. Conversion of milled pine wood by manganese peroxidase from Phlebia radiata. Appl. Environ. Microbiol. 67: 4588-4593. https://doi.org/10.1128/AEM.67.10.4588-4593.2001
- Liers C, Ullrich R, Steffen KT, Hatakka A, Hofrichter M. 2006. Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha. Appl. Microbiol. Biotechnol. 69: 573-579. https://doi.org/10.1007/s00253-005-0010-1
- Ibrahima Q, Kruseb A. 2020. Prehydrolysis and organosolv delignification process for the recovery of hemicellulose and lignin from beech wood. Bioresour. Technol. Rep. 11: 100506. https://doi.org/10.1016/j.biteb.2020.100506
- Ji W, Shen Z, Wen Y. 2014. A continuous hydrothermal saccharification approach of rape straw using dilute sulfuric acid. Bioenerg. Res. 7: 1392-1401. https://doi.org/10.1007/s12155-014-9468-y
- Vancov T, McIntosh S. 2012. Mild acid pretreatment and enzyme saccharification of Sorghum bicolor straw. Appl. Energ. 92: 421-428. https://doi.org/10.1016/j.apenergy.2011.11.053
- Topakas E, Christakopoulos P, Faulds CB. 2005. Comparison of mesophilic and thermophilic feruloyl esterases: characterization of their substrate specificity for methyl phenylalkanoates. J. Biotechnol. 115: 355-366. https://doi.org/10.1016/j.jbiotec.2004.10.001
- Topakas E, Vafiadi C, Christakopoulos P. 2007. Microbial production, characterization and applications of feruloyl esterases. Process Biochem. 42: 497-509. https://doi.org/10.1016/j.procbio.2007.01.007
- Abokitse K, Wu M, Bergeron H, Grosse S, Lau PC. 2010. Thermostable feruloyl esterase for the bioproduction of ferulic acid from triticale bran. Appl. Microbiol. Biotechnol. 87: 195-203. https://doi.org/10.1007/s00253-010-2441-6
- Beaugrand J, Chambat G, Wong VW, Goubet F, Remond C, Paes G, et al. 2004. Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydr. Res. 339: 2529-2540. https://doi.org/10.1016/j.carres.2004.08.012