DOI QR코드

DOI QR Code

Bioconversion of Lignocellulosic Materials with the Contribution of a Multifunctional GH78 Glycoside Hydrolase from Xylaria polymorpha to Release Aromatic Fragments and Carbohydrates

  • Liers, Christiane (International Graduate School of Zittau (IHI Zittau), Dresden University of Technology) ;
  • Ullrich, Rene (International Graduate School of Zittau (IHI Zittau), Dresden University of Technology) ;
  • Kellner, Harald (International Graduate School of Zittau (IHI Zittau), Dresden University of Technology) ;
  • Chi, Do Huu (Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine) ;
  • Quynh, Dang Thu (Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology) ;
  • Luyen, Nguyen Dinh (Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology) ;
  • Huong, Le Mai (Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology) ;
  • Hofrichter, Martin (International Graduate School of Zittau (IHI Zittau), Dresden University of Technology) ;
  • Nghi, Do Huu (Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology)
  • Received : 2021.06.18
  • Accepted : 2021.08.19
  • Published : 2021.10.28

Abstract

A bifunctional glycoside hydrolase GH78 from the ascomycete Xylaria polymorpha (XpoGH78) possesses catalytic versatility towards both glycosides and esters, which may be advantageous for the efficient degradation of the plant cell-wall complex that contains both diverse sugar residues and esterified structures. The contribution of XpoGH78 to the conversion of lignocellulosic materials without any chemical pretreatment to release the water-soluble aromatic fragments, carbohydrates, and methanol was studied. The disintegrating effect of enzymatic lignocellulose treatment can be significantly improved by using different kinds of hydrolases and phenoloxidases. The considerable changes in low (3 kDa), medium (30 kDa), and high (> 200 kDa) aromatic fragments were observed after the treatment with XpoGH78 alone or with this potent cocktail. Synergistic conversion of rape straw also resulted in a release of 17.3 mg of total carbohydrates (e.g., arabinose, galactose, glucose, mannose, xylose) per gram of substrate after incubating for 72 h. Moreover, the treatment of rape straw with XpoGH78 led to a marginal methanol release of approximately 17 ㎍/g and improved to 270 ㎍/g by cooperation with the above accessory enzymes. In the case of beech wood conversion, the combined catalysis by XpoGH78 and laccase caused an effect comparable with that of fungal strain X. polymorpha in woody cultures concerning the liberation of aromatic lignocellulose fragments.

Keywords

Acknowledgement

This research is partly funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) (Grant No. FWO.104.2017.03) and the Ministry of Science and Technology (NDT.45.GER/18).

References

  1. Aya Z, Paes G. 2019. Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis. Front. Chem. 7: 874. https://doi.org/10.3389/fchem.2019.00874
  2. Mapemba LD, Epplin FM, Taliaferro CM, Huhnke RL. 2007. Biorefinery feedstock production on conservation reserve program land. Rev. Agric. Econ. 29: 227-246. https://doi.org/10.1111/j.1467-9353.2007.00340.x
  3. Vasic K, Knez Z, Leitgeb M. 2021. Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Molecules 26: 753. https://doi.org/10.3390/molecules26030753
  4. Lilholt H, Lawther JM. 2000. Natural organic fibres, pp. 303-325. In Kelly A, Zweben C (eds.), Comprehensive composite materials, Ed. Elsevier Science.
  5. Jeya M, Kalyani D, Dhiman SS, Kim H, Woo S, Kim D, et al. 2012. Saccharification of woody biomass using glycoside hydrolases from Stereum hirsutum. Bioresour. Technol. 117: 310-316. https://doi.org/10.1016/j.biortech.2012.03.047
  6. Ostby H, Hansen LD, Horn SJ, Eijsink VGH, Varnai A. 2020. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J. Ind. Microbiol. Biotechnol. 47: 623-657. https://doi.org/10.1007/s10295-020-02301-8
  7. Chowdhary P, Shukla G, Raj G, Ferreira LFR, Bharagava RN. 2019. Microbial manganese peroxidase: a ligninolytic enzyme and its ample opportunities in research. SN Appl. Sci. 1: 45. https://doi.org/10.1007/s42452-018-0046-3
  8. Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI. 2017. Lignin peroxidase functionalities and prospective applications. Microbiologyopen 6: e00394. https://doi.org/10.1002/mbo3.394
  9. Sipos B, Benko Z, Dienes D, Reczey K, Viikari L, Siika-aho M. 2010. Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Appl. Biochem. Biotechnol. 161: 347-364. https://doi.org/10.1007/s12010-009-8824-4
  10. Sorensen HR, Pedersen S, Meyer AS. 2007. Synergistic enzyme mechanisms and effects of sequential enzyme additions on degradation of water insoluble wheat arabinoxylan. Enzyme Microb. Technol. 40: 908-918. https://doi.org/10.1016/j.enzmictec.2006.07.026
  11. Shrivastava S. 2020. Introduction to glycoside hydrolases: classification, identification and occurrence, pp. 3-84, In Shrivastava S (ed.), Industrial applications of Glycoside hydrolases. Ed. Springer Singapore, Singapore.
  12. Nghi DH, Bittner B, Kellner H, Jehmlich N, Ullrich R, Pecyna MJ, et al. 2012. The wood-rot ascomycete Xylaria polymorpha produces a novel GH78 glycoside hydrolase that exhibits α-L-rhamnosidase and feruloyl esterase activity and releases hydroxycinnamic acids from lignocelluloses. Appl. Environ. Microbiol. 78: 4893-4901. https://doi.org/10.1128/AEM.07588-11
  13. Faulds CB, Williamson G. 1994. Purification and characterization of a ferulic acid esterase (FAE-111) from Aspergillus niger: specificity for the phenolic moiety and binding to microcrystalline cellulose. Microbiology 140: 779-787. https://doi.org/10.1099/00221287-140-4-779
  14. Liers C, Ullrich R, Pecyna M, Schlosser D, Hofrichter M. 2007. Production, purification and partial enzymatic and molecular characterization of a laccase from the wood-rotting ascomycete Xylaria polymorpha. Enzym. Microb. Technol. 41: 785-793. https://doi.org/10.1016/j.enzmictec.2007.07.002
  15. Li H, Zhan H, Fu S, Liu M, Chai XS. 2007. Rapid determination of methanol in black liquors by full evaporation headspace gas chromatography. J. Chromatogr. A. 1175: 133-136. https://doi.org/10.1016/j.chroma.2007.10.040
  16. Hofrichter M, Lundell T, Hatakka A. 2001. Conversion of milled pine wood by manganese peroxidase from Phlebia radiata. Appl. Environ. Microbiol. 67: 4588-4593. https://doi.org/10.1128/AEM.67.10.4588-4593.2001
  17. Liers C, Ullrich R, Steffen KT, Hatakka A, Hofrichter M. 2006. Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha. Appl. Microbiol. Biotechnol. 69: 573-579. https://doi.org/10.1007/s00253-005-0010-1
  18. Ibrahima Q, Kruseb A. 2020. Prehydrolysis and organosolv delignification process for the recovery of hemicellulose and lignin from beech wood. Bioresour. Technol. Rep. 11: 100506. https://doi.org/10.1016/j.biteb.2020.100506
  19. Ji W, Shen Z, Wen Y. 2014. A continuous hydrothermal saccharification approach of rape straw using dilute sulfuric acid. Bioenerg. Res. 7: 1392-1401. https://doi.org/10.1007/s12155-014-9468-y
  20. Vancov T, McIntosh S. 2012. Mild acid pretreatment and enzyme saccharification of Sorghum bicolor straw. Appl. Energ. 92: 421-428. https://doi.org/10.1016/j.apenergy.2011.11.053
  21. Topakas E, Christakopoulos P, Faulds CB. 2005. Comparison of mesophilic and thermophilic feruloyl esterases: characterization of their substrate specificity for methyl phenylalkanoates. J. Biotechnol. 115: 355-366. https://doi.org/10.1016/j.jbiotec.2004.10.001
  22. Topakas E, Vafiadi C, Christakopoulos P. 2007. Microbial production, characterization and applications of feruloyl esterases. Process Biochem. 42: 497-509. https://doi.org/10.1016/j.procbio.2007.01.007
  23. Abokitse K, Wu M, Bergeron H, Grosse S, Lau PC. 2010. Thermostable feruloyl esterase for the bioproduction of ferulic acid from triticale bran. Appl. Microbiol. Biotechnol. 87: 195-203. https://doi.org/10.1007/s00253-010-2441-6
  24. Beaugrand J, Chambat G, Wong VW, Goubet F, Remond C, Paes G, et al. 2004. Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydr. Res. 339: 2529-2540. https://doi.org/10.1016/j.carres.2004.08.012